
electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com
p

lec
s U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

XMC Target Support User Manual Version 1.3

How to Contact Plexim:

+41 44 533 51 00 Phone☎
+41 44 533 51 01 Fax

Plexim GmbH Mail✉
Technoparkstrasse 1
8005 Zürich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

XMC Target Support User Manual

© 2024, 2025 by Plexim GmbH

The product described in this manual is furnished under a license agreement.
The software may be used or copied only under the terms of the license agree-
ment. No part of this manual may be photocopied or reproduced in any form
without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other prod-
uct or brand names are trademarks or registered trademarks of their respective
holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

1 Quick Start 3
Requirements . 3

Installing the Target Support Package . 3

Build and Deploy Generated Code . 4

Program the MCU from PLECS . 5

Program the MCU from ModusToolbox 5

Program the MCU from DAVE . 6

Start the External Mode . 6

2 Target Support Architecture 9
Overview . 9

The Embedded Code Generation Workflow 9

Control Task Execution . 10

Control Task Accuracy and PWM Frequency Tolerance 11

Explicit and Implicit Trigger Definitions 11

The Code Generation Project . 18

3 XMC Coder Options 23
General . 23

External Mode . 24

Contents

4 XMC Target Support Library Component Reference 27
Analog Comparator . 28

ADC . 30

Base Task Load . 32

Control Task Trigger . 33

DAC . 34

Digital In . 35

Digital Out . 36

Edge Counter . 37

Pseudo-DAC . 40

Powerstage Protection . 42

Pulse Capture . 46

PWM . 49

Quadrature Encoder Counter (QEP) . 54

Timer . 57

1

Contents

2

1

Quick Start

Requirements

The PLECS XMC Target Support Package currently supports the XMC1400
microprocessor from the XMC1xxx family and the XMC4400 microprocessor
from the XMC4xxx family.

In order to use the PLECS XMC Target Support Package you will need:

• A host computer (with Microsoft Windows or Mac OS X)
• PLECS Blockset or Standalone 4.9.5 or newer
• PLECS Coder
• Segger J-Link Software Pack V7.68b or newer,

https://www.segger.com/downloads/jlink/

If you have not done so yet, please download and install the latest PLECS re-
lease on your host computer.

Installing the Target Support Package

Start by downloading the Target Support Package from the Plexim website:
https://www.plexim.com/download/tsp_xmc. Depending on the platform you
are running PLECS on, you will receive either a ZIP archive or a disk image.

Next, extract it and move the xmc folder to the PLECS Coder Target Support
Packages path (e.g. to HOME/Documents/PLECS/CoderTargets).

In PLECS, select Preferences... from the File drop-down menu (or the
PLECS menu on Mac OS X) to open the PLECS Preferences dialog. Navigate
to the Coder tab and click on the Change button to select the Target Support
Packages path (e.g. HOME/Documents/PLECS/CoderTargets).

https://www.segger.com/downloads/jlink/
https://www.plexim.com/download/tsp_xmc/

1 Quick Start

Click Rescan to make the TSP available without restarting PLECS. The tar-
gets included as part of the XMC Target Support Package should now be listed
under Installed targets. These targets are now also available in the Tar-
get dropdown menu which can be found under the Target tab of the Coder +
Coder options... window.

Next, the required Segger J-Link Software Pack must be downloaded from the
Segger website (https://www.segger.com/downloads/jlink/) and installed on
your host computer. Finally, you must provide PLECS with your J-Link instal-
lation path. To do this, return to the PLECS Preferences dialog by selecting
Preferences... from the File drop-down menu (or the PLECS menu on Mac
OS X). Navigate to the Coder tab to see the installed targets. Click the icon
in the Family column next to the XMC entry and enter the path to the J-Link
installation (e.g. /Applications/SEGGER/JLink).

Four more folders labeled /projects/dave_1400, /projects/dave_4400, /pro-
jects/mtb_1400, and /projects/mtb_4400 are included in the ZIP archive. The
contents of these folders are only required if the PLECS Coder is configured to
generate code into a DAVE IDE or ModusToolbox project.

Build and Deploy Generated Code

There are three primary methods for building and deploying generated embed-
ded code onto an XMC MCU.

1 Build and program the MCU from PLECS

You can directly program the target device from the PLECS application.
Clicking Build in the Coder Options dialog generates model and support-
ing hardware configuration code, builds the application using the ARM GCC
tools, and then flashes the target via J-Link.

2 Build and program the MCU from ModusToolbox

In this approach the PLECS Coder generates code for the specified target
into a template ModusToolbox C Project. ModusToolbox is then used to build
the project and flash the target device. The advantage of this method is that
the generated code can easily be inspected. Further, the developer has access
to debugging tools.

3 Build and program the MCU from DAVE

Similar to generating code into a template ModusToolbox C project, the
PLECS Coder can generate code for the specified target into a template

4

https://www.segger.com/downloads/jlink/

Build and Deploy Generated Code

DAVE project. DAVE is then used to build the project and flash the target
device. The advantage of this method is that the generated code can easily be
inspected. Further, the developer has access to debugging tools.

If the required software is installed on your PC you can easily switch between
the different methods by changing the Build type parameter in the Coder op-
tions... + Target menu.

Program the MCU from PLECS

PLECS can automatically program the target MCU after it finishes generat-
ing and building code. Programming occurs over the GNU debug protocol and
requires a GDB server. The XMC TSP uses Segger J-Link for that purpose.

To deploy code to an XMC target from PLECS, navigate to the PLECS Coder
Options + Target window, and select the target MCU. Select Build and pro-
gram from the Build type dropdown menu.

Program the MCU from ModusToolbox

The target support package includes two archive files containing ModusTool-
box C Projects. These projects are pre-configured to build and deploy code for
XMC microcontrollers from ModusToolbox 3.2. To proceed, first import the pre-
configured ModusToolbox C Projects into ModusToolbox. Depending on the chip
you are developing for, that will be either /projects/mtb_1400.zip or /pro-
jects/mtb_4400.zip.

To import, navigate to File + Import... and select Existing Projects into
Workspace. Browse to the archive file configured for the MCU you are devel-
oping for (i.e. /projects/mtb_1400.zip or /projects/mtb_4400.zip), and click
Finish.

Next, the build configuration must be specified according to the size of your
microcontroller’s flash memory. To do this, right click on your ModusToolbox
project in the Project Explorer tab and select the appropriate build configura-
tion under Build Configurations + Set Active.

Open the PLECS application, navigate to the Coder + Coder Options... win-
dow and select the Target tab. Select Generate code into ModusToolbox
project from the Build type dropdown menu. Enter the location of the /pro-
jects/mtb_1400/cg or /projects/mtb_4400/cg folder into the ModusTool-
box project directory field and click Build. Then, proceed to build and debug
your project as you would a normal ModusToolbox C Project.

5

1 Quick Start

Note that it is necessary to manually delete the contents of the /project-
s/mtb_1400/cg and /projects/mtb_4400/cg folders when generating code for a
new subsystem of a different name, as the ModusToolbox builder will build all
files in this folder, including old files.

Program the MCU from DAVE

The target support package includes two archive files containing DAVE
Projects. These projects are pre-configured to build and deploy code for XMC
microcontrollers from DAVE 4.5.0. To proceed, first import the pre-configured
DAVE Projects into DAVE. Depending on the chip you are developing for, that
will be either /projects/dave_1400.zip or /projects/dave_4400.zip.
To import, navigate to File + Import... and select DAVE Project. Browse to
the archive file configured for the MCU you are developing for (i.e. /projects/-
dave_1400.zip or /projects/dave_4400.zip), and click Finish.
Next, the build configuration must be specified according to the size of your mi-
crocontroller’s flash memory. To do this, right click on your DAVE project in
the C/C++ Projects tab and select the appropriate build configuration under
Build Configurations + Set Active.
Open the PLECS application, navigate to the Coder + Coder Options... win-
dow and select the Target tab. Select Generate code into DAVE project
from the Build type dropdown menu. Enter the location of the /projects/-
dave_1400/cg or /projects/dave_4400/cg folder into the DAVE project di-
rectory field and click Build. Then, proceed to build and debug your project as
you would a normal DAVE project.
Note that it is necessary to manually delete the contents of the /projects/-
dave_1400/cg and /projects/dave_4400/cg folders when generating code for a
new subsystem of a different name, as the DAVE IDE builder will build all files
in this folder, including old files.

Start the External Mode

Once the generated code is running on the embedded target, the user can en-
ter the External Mode to update PLECS Scopes in the PLECS application with
real-time waveforms and change certain simulation parameters.
External mode can be configured to run over JTAG or Serial. This choice must
be configured from the Coder + Coder options... + Target + External Mode
window prior to building the project.

6

Start the External Mode

To establish a communication link over JTAG with your target, follow the in-
structions provided below:

• Open the Coder options... + External Mode tab and then select the icon
next to the Target device field.

• Select Serial over GDB, configure the device name to 127.0.0.1 and then
click the OK button to proceed.

• Click the Connect button and if the connection is successful you will see the
trigger controls activate.

• Set the Number of samples parameter to e.g. 1000 and click on the Acti-
vate autotriggering button.

To establish a communication link over Serial with your target, first configure
the proper USART channels from the Coder + Coder options... + Target +
External Mode window. Then, Scan for the appropriate Target device and
proceed to Connect to the target as described in the instructions above.

You will now see real-time data from the MCU in the PLECS Scopes. You can
synchronize the data capture to a specific trigger event. To do so, change the
Trigger channel selection from Off to the desired signal. The Scope will now
show a small square indicating the trigger level and delay. If the level or delay
are outside the current axes limits, a small triangle will be shown instead. Drag
the trigger icon to change the trigger level; drag it with the left mouse-button
pressed to change the trigger delay. Both parameters can also be set in the Ex-
ternal Mode dialog.

Note While a trigger channel is active, the Scope signals are only updated
when a trigger event is detected.

While the PLECS model is connected via the External Mode, the model is
locked against modifications. To disconnect from the MCU and other External
Mode connections, click on the Disconnect button or close the Coder Options
dialog.

Parameter Inlining

Certain values on the target device can be changed in real-time, when con-
nected to the target device via the External Mode, if the component is added

7

1 Quick Start

to the "Exceptions" list found in the Parameter Inlining tab of the Coder op-
tions... window, prior to building the model. Changes in the parameters will be
reflected in the Scope traces once they take effect.

8

2

Target Support Architecture

Overview

As a separately licensed feature, the PLECS Coder can generate C code from a
simulation model to facilitate embedded code generation. Plexim provides and
maintains target support packages (TSPs) for specific processor families. A TSP
enables the PLECS Coder to generate code that is specific to a particular hard-
ware target such as the XMC family of MCUs or the PLECS RT Box. With the
PLECS Coder and a TSP, embedded control code can be generated, compiled,
and uploaded to the target device directly from the PLECS environment with
minimal effort. Furthermore, the embedded control logic can be tested exten-
sively inside the PLECS simulation environment prior to real-time deployment.

The Embedded Code Generation Workflow

The embedded workflow is designed for you to easily transition from a PLECS
model to an embedded code generation project without having to build and
maintain separate models. A typical embedded code generation workflow con-
sists of the following steps:

1 Design and simulate a controller and plant in PLECS. The controller repre-
sents the application that will run on the embedded target. The plant rep-
resents the hardware connected to the embedded target including the power
stage and other physical systems.

2 Add components from the target support library to configure the embedded
peripheral devices. Place the controller and peripheral models into a subsys-
tem representing the embedded target.

2 Target Support Architecture

3 Run an offline simulation. All peripheral components in the target support
library have behavioral offline models to facilitate the transition from simu-
lation to real-time deployment.

4 Select a discretization step size and nominal control task execution fre-
quency. When generating C code, the PLECS Coder will use the discretiza-
tion step size to automatically transform all continuous states in the con-
troller to the discrete state-space domain using the Forward Euler method.
The control task execution frequency is based on the discretization step size
and specifies the nominal execution rate of the digital control loop.

5 Build the embedded project and flash the MCU using PLECS, ModusToolbox,
or the DAVE IDE.

6 Connect to the MCU using the External Mode to test the embedded control
code executing on the embedded target.

Control Task Execution

Embedded applications for power electronics typically sense signals from the
power converter, process the inputs using digital control laws, and output sig-
nals to actuation devices. The XMC TSP library includes components to model
and program the MCU peripherals for sensing and actuation. The control laws
are implemented using standard PLECS library components.

Time synchronization of signal measurement via the analog-to-digital converter
(ADC), control logic execution, and actuation via PWM outputs is critical in the
digital power electronic control loop. The XMC TSP provides the flexibility to
configure the ADC and control loop interrupts through the ADC trigger and
task trigger signals.

ADC triggers start ADC conversions. The ADC start-of-conversion is driven by
an event generated by a timer based component (i.e. a Timer or PWM block).

Task triggers are generated by an ADC block at the end of ADC conversions, or
by Timer or PWM counter underflow and overflow events. The task trigger that
connects to the Control Task Trigger component will trigger one execution of
the digital control loop at the nominal base sample rate.

Additionally, the PLECS Coder and the XMC TSP allow the user to generate
multi-tasking code for the XMC family of MCUs. For further information, refer
to the "Code Generation" section in the PLECS User Manual. Multi-tasking
code unlocks processing power for controls regulating multiple system outputs
with dynamics on a range of time-scales. Using the Task library component, 15

10

https://www.plexim.com/sites/default/files/plecsmanual.pdf

Control Task Execution

tasks can be defined in addition to the base task. These tasks can be executed
at different rates, preserving processor time for the highest priority control task
(also referred to as the base task).

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks must
be an integer multiple of the base sample time.

In a multi-tasking mode, the Control Task Trigger component triggers the base
task associated with the nominal base sample time.

Note In the following sections, unless specified otherwise, control task and
base task can be considered synonymous.

Control Task Accuracy and PWM Frequency Tolerance

The MCU system clock frequency fundamentally limits the time accuracy of the
embedded target. The Timer and PWM carrier generation clocks are derived
from the system clock. Therefore the time accuracy of task triggers and PWM
carriers are also limited. The system clock frequency is defined in the Target +
General tab of the Coder + Coder Options window.

Explicit and Implicit Trigger Definitions

The interrupt sequence of the embedded application can be defined explicitly
by connecting trigger signals. If no Control Task Trigger is placed in the model,
the task trigger source will be configured implicitly. Several possible explicit
and implicit trigger sequences are discussed below.

11

2 Target Support Architecture

Control task triggered by Timer

In a basic project without an ADC or PWM block, the task trigger must be gen-
erated by a Timer block. The schematic below shows a simple application where
a digital output is toggled at a fixed rate.

The explicit representation of the trigger chain includes a Timer component
that generates the input signal for the Control Task Trigger. The Discretiza-
tion step size parameter set in the Coder + Coder Options + General menu
must agree with the Timer frequency. In the implicit representation the PLECS
Coder will configure the Timer and Control Task Trigger automatically based
on the Discretization step size parameter set in the Coder + Coder Op-
tions + General menu.

LED
Port:	0
Pin:	[6]

XMC

Digital
Out

NOT

z-1
	LED
Port:	0
Pin:	[6]

XMC

Digital
Out

NOT

z-1

Control	Task
Trigger

Timer
Freq:	Fdisc

Task

ADC
XMC

Timer

Explicit Implicit

Figure 2.1: Basic model with control task triggered by a Timer block

Control task triggered by PWM

If a PWM block is placed in the model, it is possible to synchronize the control
task execution with the PWM carrier. This relationship can be defined explicitly
by connecting the PWM task trigger output to the Control Task Trigger compo-
nent.

If the schematic does not include a Control Task Trigger, the PLECS Coder will
implicitly select the most appropriate source for the task trigger. If the model

12

Control Task Execution

contains a PWM block with a carrier frequency that matches the control task
frequency, that PWM block is used as an implicit task trigger. If no such block
exists, a Timer block is created implicitly to trigger the control task.

If the task trigger is set to disabled in the PWM Trigger tab and the trigger is
defined implicitly, the timer overflow will provide the trigger event.

NOT

z-1 LED
Port:	0
Pin:	[6]

XMC

Digital
Out

Control	Task
Trigger

NOT

z-1 	LED
Port:	0
Pin:	[6]

XMC

Digital
Out

0.5

PWM
CarrierFreq:	Fdisc

m

XMC

PWM0.5

PWM1
CarrierFreq:	Fdisc

TaskTriggerEvent:	Underflow

m

Task

XMC

PWM

Explicit Implicit

Figure 2.2: Basic model with control task triggered by PWM

13

2 Target Support Architecture

Control task triggered by Timer via ADC

It is possible to trigger the start-of-conversion of an ADC by introducing an
ADC block to the model, setting its coversion mode to Triggered, and connect-
ing a Timer block. The frequency with which the ADC is read is then detemined
by the frequency specified for the Timer block. In this configuration, an ADC
block can serve as a task trigger, with the ADC end-of-conversion generating
the trigger event.

If the ADC end-of-conversion is the source of the Control Task Trigger input,
as shown in Figure 2.3, then the control loop execution will occur immediately
after all ADC result registers are updated with the latest measurement values.
The ADC can also act as an implicit trigger for the control task if the frequency
of the Timer that triggers the ADC agrees with the discretization step size spec-
ified in the Coder + Coder Options + General menu (see fig. 2.3).

NOT

z-1 LED
Port:	0
Pin:	[6]

XMC

Digital
Out

ADC
ConversionMode:	Triggered

Task

XMC

ADC	0 0.0000

Control	Task
Trigger

NOT

z-1 	LED
Port:	0
Pin:	[6]

XMC

Digital
Out

	ADC
ConversionMode:	Triggered

Task

XMC

ADC	0 0.0000Timer
Freq:	Fdisc

Task

ADC
XMC

Timer

	Timer
Freq:	Fdisc

Task

ADC
XMC

Timer

Explicit Implicit

Figure 2.3: Basic model with control task triggered by ADC

Control task triggered by PWM via ADC

The ADC start-of-conversion can also be triggered by a PWM block instead of a
Timer block. This arrangement synchronizes the ADC start-of-conversion with
the PWM actuation. If the triggered ADC also acts as a task trigger, the ADC
result registers are updated immediately before executing the control loop.

In this configuration, the ADC can be connected explicitly to a Control Task
Trigger, or it can act as an implicit trigger if the frequency of the PWM that

14

Control Task Execution

triggers the ADC agrees with the discretization step size specified in the Coder
+ Coder Options + General menu (see fig. 2.4).

NOT

z-1 LED
Port:	0
Pin:	[6]

XMC

Digital
Out

ADC
ConversionMode:	Triggered

Task

XMC

ADC	0

Controller

0.0000

PWM
CarrierFreq:	Fdisc

AdcTriggerEvent:	Underflow

m

ADC
XMC

PWM

Control	Task
Trigger

NOT

z-1 	LED
Port:	0
Pin:	[6]

XMC

Digital
Out

	ADC
ConversionMode:	Triggered

Task

XMC

ADC	0

	Controller

0.0000

	PWM
CarrierFreq:	Fdisc

AdcTriggerEvent:	Underflow

m

ADC
XMC

PWM

Explicit Implicit

Figure 2.4: Basic model with control task triggered by PWM via ADC

15

2 Target Support Architecture

Advanced explicit configurations

Figure 2.5 displays a first advanced configuration. If a PWM block provides the
task trigger, the control task interrupt can execute at integer multiples of the
PWM carrier frequency by specifying a trigger divider. If a symmetric carrier is
used, the control task can be triggered at twice the PWM carrier frequency by
triggering on both the carrier overflow and underflow.

Figure 2.5 shows a case where the discretization frequency is Fdisc, the sym-
metric PWM carrier period is Tsw = 2/Fdisc Hz, and the Control Task Trigger
interrupt period is TCtrlTask = 1/Fdisc. The control task is triggered twice per
PWM period. Figure 2.6 shows the corresponding PWM carrier, task trigger,
and PWM outputs.

NOT

z-1 LED
Port:	0
Pin:	[6]

XMC

Digital
Out

PWM
CarrierFreq:	Fdisc/2

TaskTriggerEvent:	Underflow	and	overflow

m

Task

XMC

PWM

Control	Task
Trigger

0.5

Figure 2.5: PWM frequency set to half the control task frequency

m

Overflow

Underflow

TSW

Task Trigger

TCtrlTask

PWM output
Complementary PWM

(Rep. period = 1)

Figure 2.6: PWM carrier and task interrupts for PWM frequency set to half the
control task frequency

A second advanced configuration is displayed in fig. 2.7. Each ADC can receive

16

Control Task Execution

independent start-of-conversion triggers from different PWM blocks for phase-
shifted sampling. Figure 2.7 shows the case where the ADC1 component is trig-
gered on the carrier overflow and ADC2 is triggered on carrier underflow from
two different PWM modules with a common carrier frequency.

After all channels associated with ADC2 are converted the control task is exe-
cuted with updated measurements from ADC1 and ADC2. On the next carrier
overflow the PWM modulation index register is updated to a value calculated in
the controller subsystem.

NOT

z-1 LED
Port:	0
Pin:	[6]

XMC

Digital
Out

ADC1

Task

XMC

ADC	1

0.0000

Controller1

PWM1
AdcTriggerEvent:	Overflow

m

ADC
XMC

PWM

ADC2

Task

XMC

ADC	2

0.0000

Controller2

PWM2
AdcTriggerEvent:	Underflow

m

ADC
XMC

PWM

Control	Task
Trigger

Figure 2.7: Explicit phase-shifted ADC sampling

m

Overflow

Underflow

Task Trigger

ADC1 Trigger

TSW

ADC2 Trigger

PWM output
Complementary PWM

(Rep. period = 2)

Figure 2.8: PWM carrier and interrupts for phase-shifted ADC sampling

17

2 Target Support Architecture

The Code Generation Project

This section provides additional technical background on the software archi-
tecture of the embedded code generation project included with the XMC TSP. A
ModusToolbox project and a DAVE IDE project is included for each supported
target chip in the projects/ folder of the TSP.

Static and dynamic code

The embedded code generation project consists of dynamic and static code. Dy-
namic code is generated by the PLECS Coder and is overwritten each time the
Build button is clicked in the Coder + Coder options... window. Static code
is provided with the TSP and should not be modified. The PLECS Coder also
generates additional dynamic configuration files that are used by the embedded
application.

When Generate code into ModusToolbox project is selected for the Build
type, a ModusToolbox project directory must be specified. To conveniently
edit the code in the ModusToolbox and flash the microcontroller from there,
the code should be placed in one of the pre-configured ModusToolbox projects:
/projects/mtb_4400/cg or /projects/mtb_4400/cg. By default all gener-
ated code is placed in a newly created folder in the same directory as the saved
PLECS model.

When Generate code into DAVE project is selected for the Build type, a
DAVE project directory must be specified. To conveniently edit the code in
the DAVE IDE and flash the microcontroller from there, the code should be
placed in one of the pre-configured DAVE projects: /projects/dave_4400/cg
or /projects/dave_4400/cg. By default all generated code is placed in a newly
created folder in the same directory as the saved PLECS model.

Control and background task dispatching

The application framework includes a rate monotonic scheduler to allow precise
and efficient execution of the digital control loops. The base task is executed at
the highest priority. Additionally, up to 15 slower lower-priority tasks, executed
at different rates, can be specified. For further information on task scheduling,
refer to the "Code Generation" section in the PLECS User Manual. A lowest-
priority background task also exists to handle non-time-critical tasks. Figure
2.9 shows a configuration with a base task, one additional task, and a back-
ground task executing in real-time on the MCU.

18

https://www.plexim.com/sites/default/files/plecsmanual.pdf

The Code Generation Project

With every control task trigger interrupt issued by the Timer, PWM, or ADC
end-of-conversion (bold vertical bar), any lower priority tasks are interrupted
and the base task is executed. This ensures that the control task has the high-
est priority. In addition, the lower priority tasks are periodically triggered and
executed when no higher priority tasks are active or pending.

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks must
be an integer multiple of the base sample time. The non-default tasks can be
defined in the model window using the Task library component. An example of
an additional LED task, along with a base PWM task is shown in figure 2.10.

Once the base and additional tasks have completed, the system continues with
the background task where lowest priority operations are processed.

If the base task is still executing when a second control task interrupt is re-
ceived, then the processor will halt and an assertion will be generated. Sim-
ilar behavior occurs if a low priority task does not complete by the time it is
scheduled to execute again. Assertions can be monitored using ModusToolbox
or DAVE IDE debug tools.

Base task

Additional task 1

Background task

1 2 3 4 5 6

Figure 2.9: Nested control tasks

19

2 Target Support Architecture

PWM

m

Task

XMC

PWM0.5

Constant
Control	Task

Trigger

NOT

z-1
LED

Port:	0
Pin:	[6]

XMC

Digital
Out

Task

Figure 2.10: Example of an additional LED task along with a base PWM task

Embedded project architecture

Figure 2.11 shows the architecture of the embedded project included with the
XMC TSP. At the top of the software stack is an application layer consisting of
the main application and the base and additional tasks. Next, there is a dis-
patch routine that provides a rate monotonic scheduler for the nested control
tasks, as previously described. A custom light-weigth task scheduler was devel-
oped by Plexim for the XMC TSP. The processor-in-the-loop (PIL) framework
acts as middleware for External Mode communication with the PLECS appli-
cation on the user PC. The hardware abstraction layer (HAL) provides a hard-
ware agnostic interface between the application and chip specific configuration
settings. This ensures code portability between different processor platforms.
The hardware specific function calls utilize the XMC drivers to configure the
MCU and key peripherals. At the bottom of the stack is the embedded hard-
ware which includes the MCU, peripheral devices, and other onboard acces-
sories.

20

The Code Generation Project

Dispatch Routine

Application
main(){
initialization()
CONTROL_INIT
background()

}

Hardware Abstraction Layer (HAL)

XMC Lib Software Library and Drivers

Embedded Hardware

PIL Framework

Base Task

Highest priority
task

Additional
Tasks

Figure 2.11: Embedded project architecture

21

2 Target Support Architecture

22

3

XMC Coder Options

The Target tab contains code generation options which are specific to the XMC
Target Support Package.

Target Selects the target device family.

General

Chip Selects the target device chip.

Package size Selects the target device packaging.

Memory size Selects the target device flash memory size.

System clock frequency (SYSCLK)[MHz] Specifies the system clock fre-
quency in megahertz (MHz). In the case of XMC1400 this corresponds to the
main clock frequency (MCLK) and in the case of XMC4400 it corresponds to the
PLL clock frequency (fPLL).

System clock source Selects the internal or external system clock source.
The internal clock source corresponds to DCO1 in the case of XMC1400 and to
the "fast internal oscillator" in the case of XMC4400.

External oscillator frequency [MHz] Specifies the frequency in megahertz
(MHz) of the external crystal High Precision Oscillator. The circuit for the ex-
ternal crystal High Precision Oscillator must be connected to pins XTAL1 and
XTAL2.

External clock frequency [MHz] Specifies the frequency in megahertz
(MHz) of the external clock source. The external clock must be applied to pin
XTAL1/CLKIN and XTAL2 must be left unconnected.

External ADC reference (Vref+)[V] Specifies the external reference in volts
(V). This reference voltage is used for an analog input (ADC) or output (DAC)
signal.

3 XMC Coder Options

Step size tolerance The desired control task frequency may not be achiev-
able based on the system clock frequency and the nominal discretization time
step. This setting configures the Coder to either Enforce exact value by gen-
erating an error when the exact control task frequency is unachievable or to
automatically Round to closest achievable value.

Build type This setting specifies the action of the Build button. Generate
code into ModusToolbox project will generate code into the specified Modus-
Toolbox project. ModusToolbox must then be used to build the project and flash
the MCU. Generate code into DAVE project will generate code into the spec-
ified DAVE project. DAVE must then be used to build the project and flash the
MCU. The Build only option will generate the code and build it. The Build
and program option will automatically build and flash the target device from
within PLECS.

ModusToolbox project directory Specifies the target folder for code gen-
eration. The code must be generated into pre-configured ModusToolbox C
Projects. When using the ModusToolbox project templates provided with the
XMC target support package, code must be generated into the /project-
s/mtb_1400/cg or /projects/mtb_4400/cg folder.

DAVE project directory Specifies the target folder for code generation.
The code must be generated into a pre-configured DAVE project. When using
the DAVE project templates provided with the XMC target support package,
code must be generated into the /projects/dave_1400/cg or /projects/-
dave_4400/cg folder.

Programming interface Provides an option to automatically program the
target MCU from PLECS after it finishes generating and building code. Pro-
gramming occurs over the GNU debug protocol and requires a GDB server. This
is implemented using Segger J-Link.

External Mode

These options are used to configure the External Mode communication with the
target device. This choice must be configured prior to building the project.

External Mode This setting adds code to the target device that enables the
External Mode. Code size and memory consumption are increased when the Ex-
ternal Mode is enabled. There are two communication options available, Serial
or JTAG.

24

Target buffer size Specifies how much target memory (16-bit words of RAM)
should be allocated to buffering signals for the external mode. The number of
words Nw required by the external mode can be calculated as follows: Nw =
Nsignals · 2 · (Nsamples+1). If more samples are requested than what is supported
by the memory allocation, PLECS will automatically truncate the scope traces
to the maximal possible Nsamples value. Note, however, that requesting more
memory than what is available on the target will result in a build error.

USART Rx Port Specifies the Rx port used for the External Mode USART
connection.

USART Rx Pin Specifies the Rx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

USART Tx Port Specifies the Tx port used for the External Mode USART con-
nection.

USART Tx Pin Specifies the Tx pin used for the External Mode USART con-
nection. This pin cannot be used by other peripherals.

25

3 XMC Coder Options

26

4

XMC Target Support Library
Component Reference

This chapter lists the contents of the XMC Target Support library in alphabeti-
cal order.

4 XMC Target Support Library Component Reference

Analog Comparator

Purpose Configure an analog comparator.

Library XMC

Description

XMC

This block configures the ACMP peripheral. The output can be routed in two
ways: It can be connected to a digital output pin and it can be connected inter-
nally to a CCU8 slice.

Parameters
Main

ACMP Unit
Selects the analog comparator unit.

Hysteresis
Selects the voltage hysteresis level. Adding hysteresis makes the analog
comparator more robust to jitter.

Enable port
The analog comparator can be enabled and disabled in software.

Output

Out
The output of the analog comparator can be connected to a CCU8 slice
through an internal hardware connection. The output can also be routed
to an external digital output pin.

Out Port
Port number of the output pin.

Out Pin
Pin number of the output pin.

28

Analog Comparator

Output inversion
Allows the user to invert the polarity of the analog comparator output. By
default, the output of the analog comparator is logic ‘1’ if the voltage level at
the positive input is greater than the voltage level at the negative input.

Output filter
Enables the optional anti glitch filter.

29

4 XMC Target Support Library Component Reference

ADC

Purpose Output the voltage measured on an analog input channel.

Library XMC

Description

Task

XMC

ADC	0

This block configures the VADC peripheral. The ADC block output signal repre-
sents the voltage measured on the input pin. The output can be scaled and an
offset can be applied after scaling; it is calculated as input*Scale+Offset. The
ADC is configured to measure voltages with a 12 bit resolution.

The ADC measurement conversion can either be triggered synchronously by a
trigger event generated by a Timer or PWM block, or asynchronously by a con-
version request source that is internal to the VADC peripheral. The user can
toggle between these two configurations using the Conversion request source
parameter.

If the Task output is connected to a Control Task Trigger, then the control task
will execute every time the ADC is triggered by the Timer or PWM block, but
only after all the enabled ADC channels have been converted.

Parameters
Main

Conversion mode
Determines whether the ADC measurement conversion is triggered syn-
chronously by a trigger event generated by a Timer or PWM block, or asyn-
chronously by a conversion request source that is internal to the VADC pe-
ripheral.

If the parameter is set to Continuous, the ADC conversion requests are is-
sued by a channel scan source. If the Analog input channel(s) parame-
ter is vectorized, each input channel is measured sequentially, starting from
the highest enabled channel number and continuing towards lower channel
numbers.

If the parameter is set to Triggered, the ADC conversion requests are is-
sued by a queued source. This conversion request source is triggered by
a CCU4 or CCU8 slice associated with a Timer or PWM block. The trigger
block can be defined explicitly in the PLECS schematic by connecting an
ADC trigger output to the ADC trigger input, or it can be chosen automat-
ically if the ADC trigger input is left unconnected (see Chapter 2: Target
Support Architecture for more information on explicit and implicit trigger

30

ADC

definitions). The ADC block converts the selected inputs once per trigger. If
the Analog input channel(s) parameter is vectorized, each input channel
is measured sequentially in the order that it appears in the vector.

ADC group
Selects the ADC group used by the ADC block. The same group can be used
by multiple ADC blocks, but only one of these blocks can have an external
trigger.

Analog input channel(s)
Indices of the enabled analog input channel(s) for the specific ADC group.
For vectorized input signals a vector of input channel indices must be speci-
fied.

Scale(s)
A scale factor for the input signal. Can be a vector of the same length as the
analog input channel vector or a scalar if the same scale factor is applied to
all analog input channels.

Offset(s)
An offset for the scaled input signal. Can be a vector of the same length as
the analog input channel vector or a scalar if the same offset is applied to
all analog input channels.

Programmable-gain amplifier(s)
Allows the user to make the amplifier gains configurable if programmable-
gain amplifiers are present on the target device.

Amplifier gain(s)
Sets the gains of the programmable-gain amplifiers. The amplifier gains af-
fect the resolution of the ADC but do not scale the input signal. The scaling
that results from the amplifier gain is cancelled by inverse scaling in soft-
ware. The output of the ADC remains input*Scale+Offset. Can be a vector
of the same length as the analog input channel vector or a scalar if the same
gain is applied to all analog input channels.

Acquisition time
Selects between a user defined or minimum ADC acquisition time.

Acquisition time value [s]
Sets the ADC acquisition time window in seconds.

31

4 XMC Target Support Library Component Reference

Base Task Load

Purpose Provide the CPU load measured as the execution time of the base task as a per-
centage of the base task period.

Library XMC

Description

1

XMC

Base	Task
Load

This block provides the execution time of the base task as a percentage of the
base task period. If only a single task is executed on the microcontroller, this
fully represents the CPU load. In case of multi-tasking, the output corresponds
to the CPU load generated by the base task only, and does not include the load
created by additional lower-priority tasks.

For robust operation, it must be ensured that the base task load never ap-
proaches 100 %. The base task load can be reduced by increasing the Dis-
cretization step size specified in the Scheduling tab of the Coder Options
menu, or by simplifying the PLECS model.

32

Control Task Trigger

Control Task Trigger

Purpose Specify the base sample time and trigger for the main control tasks.

Library XMC

Description The digital control loop executes at a nominal base sample time. The input to
the Control Task Trigger specifies the interrupt that triggers a control loop exe-
cution. The source of the interrupt can be from the ADC end-of-conversion sig-
nal, PWM counter underflow and overflow events, or the Timer block. When a
Control Task Trigger is not included in the subsystem an appropriate trigger
source is automatically determined.

In multi-tasking mode (defined in the Scheduling tab of the Coder Options
dialog), the Control Task Trigger block triggers the base task associated with
the base sample time.

The offline simulation will model the impact of controller discretization when
the Control Task Trigger is included. For offline simulations the Forward Eu-
ler method with the nominal base sample time is used to integrate continuous
states within the subsystem containing the Control Task Trigger. Offline simu-
lations will use the default subsystem execution settings when the Control Task
Trigger block is not included in the subsystem.

Parameters Nominal base sample time
Specifies the nominal sample time of the discretized model in seconds.
The nominal base sample time value is synchronized with the model Dis-
cretization step size of the PLECS Coder settings.

33

4 XMC Target Support Library Component Reference

DAC

Purpose Generate an output voltage from the input signal; the output voltage is calcu-
lated as input*Scale+Offset.

Library XMC

Description

XMC

DAC

The DAC block configures one channel of the Digital to Analog Converter (DAC)
peripheral. The voltage at the output pin of the DAC channel is given by the
block input signal, scaled by an optional scaling factor, offset by an optional off-
set voltage, and subsequently clipped by the minimum and maximum voltages.
The maximum voltage range available to the DAC is 0.3 [V] to 2.5 [V]. The DAC
is configured to generate voltages with a 12 bit resolution.

Parameters DAC channel
Selects which channel of the DAC peripheral is used by the DAC block.
Each DAC channel is connected to a unique output pin. This information
can be found in the Port I/O Function Table in the reference manual pro-
vided by Infineon.

Scale
A scale factor for the output signal.

Offset
An offset for the scaled output signal given in volts [V].

Minimum output voltage
The output voltage is clipped if it drops below the minimum output voltage.

Maximum output voltage
The output voltage is clipped if it exceeds the maximum output voltage.

34

Digital In

Digital In

Purpose Read a digital input.

Library XMC

Description

XMC

Digital
In

The output signal is 1 if the input voltage is higher than the high level input
voltage threshold, VIH , and 0 if it is lower than the low-level input voltage, VIL.
For other input voltages the output signal is undefined. Refer to the device data
sheet for the electrical characteristics of a specific target. During an offline sim-
ulation the block behaves like a simple feedthrough.

Parameters Port
Selects the port number of the digital input channel.

Pin number(s)
Defines the pin number of the digital input channel. For vectorized input
signals a vector of input channel indices must be specified.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the digital input.

35

4 XMC Target Support Library Component Reference

Digital Out

Purpose Set a digital output.

Library XMC

Description

XMC

Digital
Out

The output is set low if the input signal is zero and is set high for all other val-
ues. During an offline simulation the block behaves like a simple feedthrough.

Parameters Port
Selects the port number of the digital output channel.

Pin number(s)
Defines the pin number of the digital output channel. For vectorized output
signals a vector of output channel indices must be specified.

Output characteristic
Specifies whether the digital output is configured with an internal pull-pull
resistor or as an open drain output.

36

Edge Counter

Edge Counter

Purpose Count edges of a pulse train.

Library XMC

Description

XMC

Edge
Counter

The edge counter block counts edges of an external signal. It can be config-
ured to count rising edges, falling edges, or both. The block outputs the cur-
rent counter value. The counter value can be reset to its initial condition by a
software signal. When operating in Single channel + Direction mode, the
counter counts up or down depending on the signal level on the direction input
pin.

In order to provide this functionality, the edge counter block uses the POSIF
peripheral and the CCU4 peripheral. The POSIF peripheral is operated in di-
rection count mode.

Model Step

Pulse Input

Counter value

Direction input

Block output

tStep

4 7 6

Edge counter value as a function of the direction signal

Parameters
Main

POSIF module
Selects which POSIF module is used by the edge counter.

Maximum counter value
Sets the value at which the counter wraps.

Mode
Allows the user to enable or disable the optional direction input.

37

4 XMC Target Support Library Component Reference

External reset
Adds an optional reset to the edge counter block. The edge counter is reset
to its initial condition in response to a software signal. The reset can be con-
figured to occur on the rising edge, the falling edge, or both. A rising edge is
defined as a change from 0 to a non-zero value. A falling edge is defined as a
change from a non-zero value to 0.

Initial condition
The initial condition defines the counter value before an edge is detected.
The counter reverts to its initial condition after a reset.

Channel

Edge
Defines whether the counter is triggered by a Rising edge, a Falling edge,
or Either.

Port
Configures the input port for the pulse train. The selected port/pin combi-
nation must be connected to input 0 of the selected POSIF module. This in-
formation can be found in the Port I/O Function Table in the reference
manual provided by Infineon.

Pin
Configures the input pin for the pulse train. The selected port/pin combi-
nation must be connected to input 0 of the selected POSIF module. This in-
formation can be found in the Port I/O Function Table in the reference
manual provided by Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input.

Direction

Counting direction
Specifies the counting direction as a function of the voltage level at the di-
rection input pin.

Port
Configures the input port for the direction signal. The selected port/pin
combination must be connected to input 1 of the selected POSIF module.

38

Edge Counter

This information can be found in the Port I/O Function Table in the refer-
ence manual provided by Infineon.

Pin
Configures the input pin for the direction signal. The selected port/pin com-
bination must be connected to input 1 of the selected POSIF module. This
information can be found in the Port I/O Function Table in the reference
manual provided by Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input.

39

4 XMC Target Support Library Component Reference

Pseudo-DAC

Purpose Generate an output voltage from the input signal; the output voltage is calcu-
lated as input*Scale+Offset.

Library XMC

Description

1

XMC

Pseudo
DAC

This block generates an output signal consisting of rectangular pulses. The
width and spacing of the pulses is modulated in such a way that the desired
analog voltage level is generated when the signal is applied to an external
low-pass filter with a sufficiently low cut-off frequency. The output signal
can be scaled and an offset can be applied after scaling; it is calculated as in-
put*Scale+Offset. Output voltage limitations can also be set.

Two peripherals can be used to generate the pulse train: the CCU4 peripheral
and the BCCU peripheral. If the CCU4 peripheral is used, the Pseudo-DAC
block will generate a PWM signal. The period of the PWM signal is defined by
the specified resolution and the system clock frequency whereas the duty cycle
of the PWM signal is defined by the input to the Pseudo-DAC block. The cut-off
frequency of the external low pass filter should be set at least one decade below
the frequency of the PWM signal. The Pseudo-DAC block will throw an error if
that threshold is not met.

The BCCU generates a train of irregularly spaced pulses. Each pulse has a du-
ration of 5 [us]. The density of the pulses is defined by the input to the Pseudo-
DAC block. As a consequence of this modulation scheme, the fundamental fre-
quency of the signal is a function of the input to the Pseudo-DAC block and will
in some cases be variable because of the irregular spacing of the pulses. This
makes it difficult to define a cut-off frequency for the external low pass filter
that will be suitable for the full input range. Minimizing the cut-off frequency
will result in a stable output voltage but will limit the frequency range of the
signal. Infineon published an application note with the title "Pseudo Digital-to-
Analog Converter (DAC) with XMC1000" which guided the development of the
Pseudo-DAC block included in Plexim’s XMC Target Support Package. In their
application note, Infineon proposes an external low pass filter with a cut-off fre-
quency of 3.4 [Hz]. If the input to the Pseudo-DAC block is confined to an in-
terval near the center of the voltage range, a low pass filter with a much higher
cut-off frequency can be used. At the 25th and 75th percentile of the voltage
range, there will be on average one pulse every 20 [us]. This would result in a
frequency of 50 [kHz]. However, the irregular spacing of the pulses will intro-
duce lower frequency components. As a rule of thumb, the cut-off frequency can

40

Pseudo-DAC

be placed at one twentieth of the lowest frequency calculated for a regularly-
spaced signal. For a Pseudo-DAC generating voltages between the 25th and
75th percentile of the voltage range, that would result in a cut-off frequency of
2.5 [kHz].

Parameters
Main

Peripheral
Lets the user choose whether they want to use the BCCU or a CCU4 to gen-
erate the rectangular pulse signal.

BCCU Channel
BCCU channel used to generate the rectangular pulse signal.

CCU4 Module
CCU4 module used to generate the rectangular pulse signal.

CCU4 Slice
CCU4 slice used to generate the rectangular pulse signal.

Scale
A scale factor for the filtered output signal.

Offset
An offset for the scaled filtered output signal.

Minimum output voltage
The lowest value that the filtered output voltage can reach.

Maximum output voltage
The highest value that the filtered output voltage can reach.

External filter cut-off frequency [Hz]
Cut-off frequency of the external low-pass filter. An error is thrown if the
maximum achievable PWM frequency for the desired resolution is less than
one decade above the cut-off frequency of the external low pass filter.

Resolution
Defines the quantization of the duty cycle of the rectangular pulse signal.

Output

Out Port
Port number of the output pin.

Out Pin
Pin number of the output pin.

41

4 XMC Target Support Library Component Reference

Powerstage Protection

Purpose Provide powerstage safety features.

Library XMC

Description

en

XMC

Powerstage
Protection

The Powerstage Protection block implements an interlock, which is a safety
mechanism that enables or disables all the PWM outputs on the target device.
The PWM outputs are disabled unless there is a logical low to high transition
on the input signal, labeled en. This prevents the PWM signals from becoming
active as soon as the code is executed on the target, thereby ensuring safe oper-
ation.

Additionally, there is an option to configure a digital output as a powerstage
enable signal. This signal can then be used, for example, to provide an enable
signal to external gate driver chips. The enable polarity of the digital output,
can be defined as:

• Active low: A logic low to high transition on the input signal, en, sets the
digital output pin to logic low (0).

• Active high: A logic low to high transition on the input signal, en, sets the
digital output pin to logic high (1).

To reiterate, the powerstage enable signal is an output signal of the Powerstage
Protection block. This signal does not contribute to enabling or disabling PWM
outputs, and can be considered as a status indicator of the Powerstage Protec-
tion interlock state. Irrespective of the configuration of this signal (Digital
output or None), the Powerstage Protection block, if included in the schematic,
disables all the PWM outputs on the target device, unless there is a logical low
to high transition on the input signal, labeled en.

When the PWM outputs are disabled via the Powerstage Protection input, all
associated PWM outputs are driven to the passive state.

If the Powerstage Protection block is omitted from the schematic, then all PWM
outputs will be continuously enabled.

Timing

When the Powerstage Protection en input is activated, the digital output asso-
ciated with the block will immediately become active to, for example, enable a
gate driver chip. However, the PWM signals will remain disabled for 100 [ms]

42

Powerstage Protection

to allow the gate driver circuit to stabilize. During this period the signal out-
put of the Powerstage Protection block will remain low. Only at the end of the
100 [ms] delay will the signal output transition to high, simultaneously with
the PWM signals becoming active. Therefore, a regulator reset or anti-windup
mechanism must be controlled by the output signal of the Powerstage Protec-
tion block (signal out), and not the en input.

Signal out

en

PWM

100 ms

enPowerstage
Protection

I

reset

1/s

reset

Controller subsystem

en Signal
out

GPIO
out

PLECS top-level schematic

Kp

Ki

Powerstage
Protection

PWM

PI controller

PWM

duty

ST

ST

en

XMC

Powerstage
Protection

en

XMC

Powerstage
Protection

m

XMC

PWM1

Constant

Powerstage Protection timing

Parameters
Main

Powerstage enable signal
Provides the option of configuring a digital as a powerstage enable indica-

43

4 XMC Target Support Library Component Reference

tor.

• Digital output: Configures a digital output as a powerstage enable signal.
This signal can then be used, for example, to provide an enable signal to ex-
ternal gate driver chips. This signal can be considered as a status indicator of
the Powerstage Protection interlock state.

• None: Powerstage enable signal is not configured.

Powerstage enable polarity
Defines the polarity of the powerstage enable signal.

• Active low: A logical low to high transition on the input signal, en, sets the
powerstage enable pin to logic low (0).

• Active high: A logical low to high transition on the input signal, en, sets the
powerstage enable pin to logic high (1).

Powerstage enable port
Selects the digital output port to be configured as the powerstage enable
signal.

Powerstage enable pin
Defines the digital output pin to be configured as the powerstage enable sig-
nal.

Powerstage enable pin output characteristic
Specifies whether the digital output is configured with an internal pull-pull
resistor or as an open drain output.

Offline only

Interlock
For convenience, the interlock can be enabled or disabled for offline simula-
tions

• Select Simulate to enable the simulation of the interlock safety mechanism.
The output of the Powerstage Protection block in the top-level schematic is
disabled unless there is a logical low to high transition on the input en.

• Select Do not simulate to disable the simulation of the interlock mecha-
nism. The output of the Powerstage Protection block can then be enabled
athe the start of the simulation by tying en to 1.

Note that the offline model of the Powerstage Protection block only simu-
lates the powerstage interlock mechanism, in conjunction with the block
output and the Powerstage enable signal digital output.

44

Powerstage Protection

The effect that the Powerstage Protection block has on the individual PWM
signal is not represented in an offline simulation, and needs to be sepa-
rately implemented by the user. An example is shown in the figure be-
low. The Powerstage enable signal digital output is wired to a PWM en-
able/disable signal switch, thereby simulating the enable signal of a gate
driver circuit.

Controller

PWM
Signals

Powerstage	
Enable	Signal

PWM
enable/disable	
Signal	Switch

Plant	circuit

Top-level	schematic

An offline implementation of the gate driver logic of the Powerstage Protec-
tion block

45

4 XMC Target Support Library Component Reference

Pulse Capture

Purpose Time-stamp edges of a pulse train.

Library XMC

Description

c

v

XMC

CAP

The capture block allows timestamping signal transitions (events) on input
pins, for example for period and/or duty cycle measurements. The timestamps
are made available on the block output c and are given in clock cycles. The out-
put v is 1 for one simulation step after an event has been triggered, 0 other-
wise.

Note The frequency of the clock supplied to the CCU4 peripheral used by
the Capture block is equal to the System clock frequency (SYSCLK)[MHz]
defined in the Coder Options on XMC4xxx targets, and double the System
clock frequency (SYSCLK)[MHz] on XMC1xxx targets.

The pulse capture block uses one slice from the CCU4 peripheral, which is op-
erated in capture mode. Two events of the CCU4 slice are configured by the
capture block. They respond to rising or falling edges detected on the input pin
and can be configured to capture and optionally reset the counter value of the
CCU4 slice. The user can either elect to configure these events manually, or use
the pre-configured PWM capture mode. In PWM capture mode, event 1 is used
to capture the period and reset the counter and event 2 is used to capture the
on-time. Which edge corresponds to which event will depend on the selected po-
larity.

The block output c is vectorized when multiple events are used. Two events are
used when the capture block is operating in PWM capture mode. The block out-
put v is vectorized when multiple input pins are used.

Parameters
Main

CCU4 Module
Selects which CCU4 module is used. CCU4 modules are further subdivided
into CCU4 slices. Each pulse capture block configures one CCU4 slice.

46

Pulse Capture

CCU4 Slice
Selects which CCU4 slice is used. Each pulse capture block configures one
CCU4 slice and each CCU4 slice can be used by only one pulse capture
block.

Clock prescaler
The clock prescaler can be increased to increase the period of the signal
which can be captured. The clock prescaler must be a power of two between
1 and 32768.

Mode
Selects whether the capture events are configured manually or the pre-
configured PWM capture mode is used.

Port
Configures the input port in PWM capture mode. The selected port/pin com-
bination must be a valid input for the selected CCU4 slice. This information
can be found in the Port I/O Function Table in the reference manual pro-
vided by Infineon.

Pin
Configures the input pin in PWM capture mode. The selected port/pin com-
bination must be a valid input for the selected CCU4 slice. This information
can be found in the Port I/O Function Table in the reference manual pro-
vided by Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input in PWM capture mode.

Polarity
Specifies the polarity of the captured PWM signal when operating the pulse
capture block in PWM capture mode.

Event [1, 2]

Capture
Determines whether or not the event is used by the pulse capture block.

Reset counter on event [1, 2]
Specifies whether or not the counter should be reset when the event occurs.

Edge
Selects whether a rising or falling edge triggers the event.

47

4 XMC Target Support Library Component Reference

Port
Configures the input port for event [1, 2]. The selected port/pin combination
must be a valid input for the selected CCU4 slice. This information can be
found in the Port I/O Function Table in the reference manual provided by
Infineon.

Pin
Configures the input pin for event [1, 2]. The selected port/pin combination
must be a valid input for the selected CCU4 slice. This information can be
found in the Port I/O Function Table in the reference manual provided by
Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input.

48

PWM

PWM

Purpose Generate a PWM signal or a complementary PWM signal pair.

Library XMC

Description

PWM

m

Task

ADC

d[r,f]
f'

en
XMC

PWM

The PWM block configures a CCU8 slice in order to generate PWM signals.
Each CCU8 slice has four outputs which are grouped into two compare chan-
nels with a different compare value. Each channel can generate either a single
PWM signal or a complementary PWM signal pair. The compare value is cal-
culated using the input signal which provides the modulation index for each
active channel. The carrier starts at 0 and varies between 0 and 1. The PWM
output is active when the input is greater than the carrier.

The carrier frequency is controlled by using the optional scalar input signal
f ′. The resulting carrier frequency fc is calculated as the product of the nom-
inal carrier frequency specified by the block parameter Carrier frequency
[Hz] and the input signal f ′. Note that all PWM signals generated by the same
PWM block share the same frequency input.

The start of all PWM blocks is synchronized using a single trigger event.

The PWM block can configure interrupts to trigger the ADC start-of-conversion
and the Control Task Trigger. Interrupts are synchronized with the PWM car-
rier, and the repetition counter period determines how many events need to
occur before a trigger is generated. If the carrier type is symmetrical the in-
terrupts will occur at the carrier underflow or overflow events. Underflow and
overflow events correspond to PWM carrier reaching the carrier minimum or
carrier maximum values respectively.

The figure below shows an example of a symmetric PWM carrier with the trig-
ger event set to underflow and the polarity configured with an active state logic
of ‘1’.

Parameters
Main

Module for PWM generation
Selects which CCU8 module is used. CCU8 modules are further subdivided
into CCU8 slices. Each PWM block configures one CCU8 slice.

Slice for PWM generation
Selects which CCU8 slice is used. Each PWM block configures one CCU8
slice and each CCU8 slice can be used by only one PWM block. Each CCU8

49

4 XMC Target Support Library Component Reference

Trigger divider Trigger event Symmetrical carrier Sawtooth carrier

1 Underflow

1 Overflow

1 Underflow and 
overflow

3 Underflow

3 Overflow

3 Underflow and 
overflow

Trigger events as a function of the carrier type and the trigger divider

m

Overflow

Underflow
PWM output

Complementary PWM

Task Trigger
ADC Trigger

TSW

PWM and trigger schemes for symmetric carrier

slice has four outputs grouped into two compare channels with two different
compare values.

50

PWM

Carrier type
Selects the carrier waveform, either sawtooth or symmetrical.

Carrier frequency [Hz]
Defines the frequency of the carrier in Hertz.

Frequency tolerance
Specifies the behavior if the desired carrier frequency is not achievable with
the specified system clock frequency.

Frequency variation
Enables or disables the frequency input port f ′. The resulting carrier fre-
quency fc is calculated as the product of the Carrier frequency [Hz] and
the input signal f ′.

Enable port
Creates an additional component port if set to Show. Applying a signal equal
to zero to this port drives the PWM signals to the passive state.

Compare Channel [1, 2]

Mode
Every CCU8 slice has four outputs which are grouped into two compare
channels. Outputs zero and one are controlled by compare value one and
outputs two and three are controlled by compare value two. Each compare
channel can generate either a single PWM signal or a complementary PWM
signal pair.

Output
Selects which output channel is used if the compare channel is operated in
single output mode.

Port (output [0, 1, 2, 3])
Selects the port of the PWM output. The selected port/pin combination must
be connected to the CCU8 slice output that is generating the PWM signal.
This information can be found in the Port I/O Function Table in the refer-
ence manual provided by Infineon.

Pin (output [0, 1, 2, 3])
Configures the pin of the PWM output. The selected port/pin combination
must be connected to the CCU8 slice output that is generating the PWM
signal. This information can be found in the Port I/O Function Table in
the reference manual provided by Infineon.

51

4 XMC Target Support Library Component Reference

Complementary port (output [1, 3])
Selects the port of the complementary PWM output. The selected port/pin
combination must be connected to the CCU8 slice output that is generating
the PWM signal. This information can be found in the Port I/O Function
Table in the reference manual provided by Infineon.

Complementary pin (output [1, 3])
Configures the pin of the complementary PWM output. The selected
port/pin combination must be connected to the CCU8 slice output that is
generating the PWM signal. This information can be found in the Port I/O
Function Table in the reference manual provided by Infineon.

Polarity
Defines the logical output of the PWM when an active state is detected. The
active state occurs when the modulation index exceeds the carrier.

Dead time variation
If enabled, an additional input port d[r,f] is displayed. The inputs to this
port change the rising-edge and falling-edge dead time in real time. The
port expects:

• A vector of size two to set equal rising and falling edge dead time for all chan-
nels, or

• A vector that specifies an individual dead time for each rising and falling
edge.

The units of the d[r,f] inputs are seconds.

Dead time [s]
Specifies the delay between the rising and falling edges of a complementary
PWM signal pair in seconds. This parameter is only applicable if dead time
variation is disabled.

Minimum dead time [s]
Specifies the minimum dead time in seconds when variable dead time is en-
abled.

Protection

Powerstage protection
Selects whether or not the PWM signals generated by the PWM block can
be forced into the passive state by the powerstage protection block. This
allows the user to protect the powerstage from undefined behavior during
microcontroller power up or when the system enters a failure state.

52

PWM

Trigger

ADC trigger
Allows the user to select which trigger event is used. The interrupts can be
configured to occur at the carrier underflow or overflow events or at both the
underflow and overflow events. Underflow and overflow events correspond
to the PWM carrier reaching the its minimum or maximum values respec-
tively. If a sawtooth carrier is used, the interrupts must occur at the carrier
overflow event.

ADC trigger divider
Downsamples the ADC trigger events by specifying how many times the
trigger event needs to occur before a trigger signal is generated.

Task trigger
Allows the user to select which trigger event is used. The interrupts can be
configured to occur at the carrier underflow or overflow events or at both the
underflow and overflow events. Underflow and overflow events correspond
to the PWM carrier reaching the its minimum or maximum values respec-
tively. If a sawtooth carrier is used, the interrupts must occur at the carrier
overflow event.

Task trigger divider
Downsamples the task trigger events by specifying how many times the
trigger event needs to occur before a trigger signal is generated.

53

4 XMC Target Support Library Component Reference

Quadrature Encoder Counter (QEP)

Purpose Count edges generated by a quadrature encoder.

Library XMC

Description

c

ic
i

XMC

QEP

The Quadrature Encoder Counter block counts edges which are generated by a
quadrature encoder. The A, B, and I outputs of the encoder are connected to the
input pins of the POSIF peripheral.

The block features up to three output ports. Each port’s availability is a func-
tion of the block’s operating mode. Output c represents the current counter
value, i the index pulse, and ic the latched counter value from the previous in-
dex pulse.

The counter counts up or down depending on the sequence of input pulses. The
counter value will increase if the direction of rotation results in rising edge of
B trailing the rising edge of A and will decrease in the opposite direction of ro-
tation. The counter is incremented or decremented at every rising and falling
edge of channel A and channel B. Therefore, the user must set the Maximum
counter value to the number of line pairs of the encoder multiplied by the
number of counted edges per line pair minus one. As an example, an encoder
with 1024 line pairs would have a maximum count of 4095 because the QEP
module counts all edges detected on channel A and channel B, which results in
four edges per line pair.

Once the counter reaches the value specified for the Maximum counter value
parameter, it is reset to zero on the next detected edge in the positive direction.
Vice versa, the counter is set to the specified Maximum counter value when it is
zero and detects an edge in the negative direction. If connected and configured
by the Mode parameter, the counter is additionally reset when the rising edge of
the index input is detected.

In order to provide this functionality, the QEP block uses the POSIF periph-
eral and the CCU4 peripheral. The POSIF peripheral is operated in standard
quadrature decoder mode.

Parameters
Main

POSIF module
Selects which POSIF module is used by the quadrature encoder counter.

54

Quadrature Encoder Counter (QEP)

Maximum counter value
Sets the value at which the counter wraps.

Mode
Selects whether the counter should be reset by an index pulse or on over-
flow only. The QEP block provides four different modes:

• Free running: The counter is reset on overflow only. Output ports i and ic
are not available, and the output I of the encoder is not required.

• Free running with index capture: The counter is reset on overflow only.
In addition, the index pulse is captured and the latched counter value from
the previous index pulse is made available at the output port ic.

• Reset by index pulse: The counter is reset by the index pulse. Output port
ic is not available.

• Reset by first index pulse only: The counter is reset by the first index
pulse only. This index pulse serves to initialize the QEP block. Output port ic
is not available.

Channel [A, B]

Port
Configures the input port for channel [A, B]. The selected port/pin combina-
tion must be connected to input [0, 1] of the selected POSIF module. This
information can be found in the Port I/O Function Table in the reference
manual provided by Infineon.

Pin
Configures the input pin for channel [A, B]. The selected port/pin combina-
tion must be connected to input [0, 1] of the selected POSIF module. This
information can be found in the Port I/O Function Table in the reference
manual provided by Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input.

Polarity
Selects whether a Rising edge or a Falling edge defines the start of a
pulse.

55

4 XMC Target Support Library Component Reference

Index

Port
Configures the input port for the index signal. If the index pulse is routed to
the POSIF peripheral, the selected port/pin combination must be connected
to input 2 of the selected POSIF module. If the index pulse is routed directly
to the CCU4 peripheral, the selected port/pin combination must be a valid
input for the selected CCU4 module/slice combination. This information can
be found in the Port I/O Function Table in the reference manual provided
by Infineon.

Pin
Configures the input pin for the index signal. If the index pulse is routed to
the POSIF peripheral, the selected port/pin combination must be connected
to input 2 of the selected POSIF module. If the index pulse is routed directly
to the CCU4 peripheral, the selected port/pin combination must be a valid
input for the selected CCU4 module/slice combination. This information can
be found in the Port I/O Function Table in the reference manual provided
by Infineon.

Input characteristic
Specifies whether an internal pull-up or pull-down resistor is connected to
the input.

Index pulse routing
Selects whether the index pulse is routed to the POSIF peripheral, or di-
rectly to the CCU4 peripheral. For most users, routing the index pulse to
the POSIF peripheral is recommended. This simplifies the user input and
makes the allocation of CCU4 resources more flexible. The option of manu-
ally allocating the CCU4 resources and routing the index pulse directly to
the CCU4 peripheral is provided as a workaround for known silicon bugs
which cause the POSIF peripheral to malfunction for certain QEP signals
(see POSIF_AI.001 in the XMC4400 Errata Sheet provided by Infineon
for more information).

CCU4 Module
Selects the CCU4 module that is used as a counter by the QEP block. This
setting is only available if the index pulse is routed directly to the CCU4
peripheral. Otherwise, a CCU4 resource is assigned automatically.

CCU4 Slice
Selects the CCU4 slice that is used as a counter by the QEP block. This set-
ting is only available if the index pulse is routed directly to the CCU4 pe-
ripheral. Otherwise, a CCU4 resource is assigned automatically.

56

Timer

Timer

Purpose Generate trigger signals for the ADC start-of-conversion and the control task
using the CCU4 peripheral.

Library XMC

Description

Task

ADC
XMC

Timer

The Timer block configures the CCU4 peripheral to generate an interrupt at
the specified frequency. The timer interrupt can be used to trigger the ADC
start-of-conversion or the Control Task Trigger.

The exact timer frequency may not be achievable for a given system clock fre-
quency. The Frequency tolerance parameter can configure the Timer block to
automatically round to the closest achievable value when the exact timer fre-
quency is unachievable.

Parameters Frequency [Hz]
Defines the frequency of the timer in Hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired timer frequency is not achievable.

57

electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com

User Manual Version 3.4

The siMUlaTion plaTforM for
power elecTronic sysTeMs

p
lec

s U
ser M

anual Version 3.4

	Contents
	Quick Start
	Requirements
	Installing the Target Support Package
	Build and Deploy Generated Code
	Program the MCU from PLECS
	Program the MCU from ModusToolbox
	Program the MCU from DAVE

	Start the External Mode

	Target Support Architecture
	Overview
	The Embedded Code Generation Workflow
	Control Task Execution
	Control Task Accuracy and PWM Frequency Tolerance
	Explicit and Implicit Trigger Definitions

	The Code Generation Project

	XMC Coder Options
	General
	External Mode

	XMC Target Support Library Component Reference
	Analog Comparator
	ADC
	Base Task Load
	Control Task Trigger
	DAC
	Digital In
	Digital Out
	Edge Counter
	Pseudo-DAC
	Powerstage Protection
	Pulse Capture
	PWM
	Quadrature Encoder Counter (QEP)
	Timer

