
Efficient Microcontroller Peripheral Modeling with PLECS

®

Mr. Munadir Ahmed

Plexim Inc.

5 Upland Road, Suite 4

Cambridge, MA 02140

1 Introduction

When modeling power controls at the system level
with a circuit simulator such as PLECS, the focus
is typically on modeling the algorithms, while mod-
els for Micro Controller Unit (MCU) peripherals are
often idealized to improve overall simulation effi-
ciency and speed. In fact, frequently, the Analog-
to-Digital (ADC) peripheral modules are modeled as
simple sample-and-hold blocks, and basic pulse gen-
erators are used for generating Pulse Width Mod-
ulation (PWM) waveforms. These simplified mod-
els have inherent limitations in comparison to the
functionality provided by the real peripheral mod-
ules. As a result, the fidelity of the system model
is substantially reduced and effects that are critical
to the power controls may be lost or inaccurately
simulated. Furthermore, the limited functionality
provided by basic peripheral models may be insuf-
ficient to model advanced modulation and sampling
techniques.

For example, typical PWM modules provide the flex-
ibility to trigger start of conversion (SOC) of the
ADC module at different events. For systems with
high current or voltage ripple, this provides en-
gineers the ability to sample the ADC inputs at
a desired instance of the PWM waveform. Both
the PWM and ADC modules can be used to trig-
ger the control interrupt as would be done in the
real system. Additionally, with high fidelity periph-
eral models (HFPMs) engineers can verify the effect
of their PWM and ADC configuration on the over-
all system. It is therefore desirable to utilize de-
tailed peripheral models to more accurately reflect
the complex functionality offered by an MCU to fa-
cilitate the implementation of sophisticated control
strategies. However, it is critical that such periph-
eral models are implemented in the most efficient
fashion to ensure that their impact on simulation
time is minimal.

Fig. 1: Typical counter behavior of a PWM module.

2 Efficient Peripheral Modeling Using PLECS

Two major types of solvers are available to simulate
power electronic systems. A fixed-step solver dis-
cretizes the modeled system to a user-specified step
size. The solver does not have the ability to change
the step size during the simulation to meet the ac-
curacy requirements of the system. In the context of
modeling a PWM module, the step size must be cho-
sen to have enough resolution to capture the duty
cycle, period, and dead time effects accurately. This
would result in a step size defined by the counter pe-
riod (e.g. 10 ns for a peripheral clocked at 100 MHz)
and therefore result in a very inefficient simulation.
To achieve higher simulation efficiency, the step size
must be increased to multiples of the counter pe-
riod at the expense of the available PWM resolu-
tion. The second class of solvers is the variable-step
solver that has the ability to change the step-size
during simulation. This dynamic nature allows a
more efficient modeling of the PWM module. The
solver takes steps ranging from small multiples of
the counter period when capturing dead time effects
to large multiples of the counter period to capture
the duty cycle and period of the generated PWM
signal. Compared to a fixed simulation step, this

Application Example ver 07-14



Efficient microcontroller periperal modeling

Fig. 2: Efficient implementation of a PWM behavior.

allows the user to model the PWM module with en-
hanced functionality very efficiently.

Fig. 1 shows a typical behavior of an actual PWM
counter (blue trace) running with a fixed period.
The compare value (red trace) is changed at ev-
ery period of the PWM. In a typical modulator, the
PWM outputs are changed at certain events that
could either be periodic or dependent on an external
configuration. In this particular case, the dynamic
events (green trace) are determined by the compare
value, while the periodic events (black trace) are de-
termined by the PWM period. For a high fidelity
PWM model, with a full duty cycle resolution, we
either need a fixed-step solver with a step size de-
fined by the counter period or a variable-step solver
and the ability to invoke a solver step at every pe-
riodic and dynamic event. The features required
for the efficient modeling of HFPMs are available
in the C-Script block in the PLECS component li-
brary. This block allows users to develop custom
controllers and components for use in their simu-
lation. It provides the advanced capabilities of the
C programming language combined with the flex-
ibility of using variable and/or fixed sample time
settings. A fixed sample time for a C-Script means
that the block is evaluated with a specified period.
A variable sample time gives the user the ability to
manually specify the next evaluation of the C-Script
block. This makes the C-Script a versatile tool that
is well suited for the efficient development of high
fidelity peripheral models.

For the efficient modeling of a PWM module, the C-
Script block is defined to use a fixed sample time,
which determines the periodic events (black trace)
at the PWM period. At those events, the time for the
next dynamic event (green trace) is calculated and
the solver evaluates the block at that instant us-
ing the variable sample time of the C-Script block.
This allows the PWM model to be evaluated at only

the relevant points in time and therefore is the
most efficient approach for implementing a high fi-
delity PWM. As seen in Fig. 2, the modeled counter
value (blue trace) is only updated at those instants,
but coincides with the actual counter value (dotted
trace). This approach obtains the full PWM resolu-
tion without requiring a very inefficient sampling of
the model based on the counter period.

3 Modeling of a TI ePWM (Type 0) Module in

PLECS

A Type 0 ePWM module [1] from TI’s C2000 series
was modeled in PLECS. This module is capable of
generating two independent PWM output signals.
It also includes functionality provided by an Event
Trigger submodule that can be used to dynamically
trigger ADC conversions and/or control interrupts.
Furthermore, it contains a Deadband submodule
that can be configured to invert the PWM outputs
or to implement a dead time between the two out-
puts.
Fig. 3 shows a PLECS model of the ePWM mod-
ule and its parameter mask. The block’s config-
uration is split into static and non-static parame-
ters. Users can specify general static parameters
such as the basic counter period (System Clock),
the PWM period (TBPRD) and the behavior of the
counter (TBCTL) in the mask parameters. Further-
more, the ETx parameters define the behavior of the
Event Trigger submodule and the DBx parameters
can be used to configure the Deadband submodule.
These parameters directly correspond to the regis-
ters used in the hardware and can be entered as in-
teger, binary or hexadecimal values. This gives the
user the ability to test a hardware configuration in
a simulation environment. The two counter com-
pare inputs (CMPA and CMPB) define the dynamic
events of the ePWM model and the Action Quali-
fier Control Registers (AQCTLx) inputs are used to
configure the actions at those events. For example,
the output EPWMA can be configured to be set high
when the counter equals CMPB and reset at the
PWM period. The registers are implemented as in-
puts to the ePWM block, and can be modified while
the simulation is running. More detailed informa-
tion on the Type 0 ePWM module and its configura-
tions is found in the TI technical reference guides,
available on the TI website.

4 Simulation Results

To further illustrate the advantages of HFPMs,
a current-controlled buck converter was developed
with the above discussed ePWM module as well as

Application Example 2



Efficient microcontroller periperal modeling

Fig. 3: Model of a TI Type 0 ePWM module implemented in PLECS

Fig. 4: Current-controlled buck converter with peripheral models.

a HFPM for a TI Type 2 ADC module[2]. As seen in
Fig. 4, the current measurement is realized using a
simple shunt resistor in series with the diode. Such
a configuration requires the current to be sampled
while the diode is conducting, ideally at the center
of the conducting phase.

The ePWM is configured to operate in up-counting
mode with a frequency of 10 kHz. Furthermore, the
EPWMA signal is configured to be set high when
the counter equals zero and set low when a CTR =
CMPA event (green trace) occurs as defined by the
AQCTLA register. Fig. 5 shows the resulting char-

Fig. 5: PWM modulation and conversion trigger based on the ePWM model.

Fig. 6: Current measurement invoked by the ePWM module.

acteristics of the ePWM module. As already men-
tioned, this block is only evaluated at the relevant
points in time and therefore the counter value is
only updated at those instants.
Additionally, the internal Event Trigger module is
configured to invoke an EPWMSOCA trigger for ev-
ery CTR = CMPB event (red trace). This is used to
trigger an ADC SOC for current measurement, as
seen in Fig. 4. Once the measurement is finished,
an ADC interrupt is generated to trigger the con-
troller, which then updates the CMPA and CMPB
registers for the ePWM module.
Fig. 6 shows the actual diode current (red trace)
and the sampled current (blue trace) during the
startup transient. As shown, the ADC is always
triggered to measure the current at the midpoint
of the interval during which the diode is conduct-
ing current. The graph also shows the EPWMSOCA
signal used as the SOC trigger for the ADC module.

5 Conclusion

The HFPMs allow users to develop models that are
a closer representation of the real system. The pro-
posed implementation enables an efficient integra-
tion of these models into a system level simulation
without limiting the PWM resolution or the sup-
ported functionalities.

References

[1] “Tms320x2833x, 2823x enhanced pulse width
tms320x2833x, 2823x enhanced pulse width
modulator (epwm) module,” July 2009.

[2] “Tms320x2833x analog-to-digital converter
(adc) module,” Literature Number: SPRU812A,
October 2007.

Application Example 3


