
electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com
p

lec
s U

ser M
anual Version 3.4

THE SIMULATION PLATFORM FOR

POWER ELECTRONIC SYSTEMS

PIL User Manual July 2018 - for PLECS 4.2

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PIL User Manual

© 2018 by Plexim GmbH

The software PLECS described in this manual is furnished under a license
agreement. The software may be used or copied only under the terms of the
license agreement. No part of this manual may be photocopied or reproduced
in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their re-
spective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii

Before You Begin 3
Installing the PIL Demo Projects . 3

What’s New in this Version . 4

Major New Features . 4

Further Enhancements . 4

1 Processor-in-the-Loop 5
Motivation . 5

How PIL Works . 6

PIL Modes . 8

Configuring PLECS for PIL . 9

Target Manager . 9

Communication Links . 10

PIL Block . 12

2 PIL Framework 17
Overview . 17

PIL Prep Tool . 18

Probes . 18

Read Probes . 18

Override Probes . 20

Contents

Calibrations . 23

Code Identity . 23

Remote Agent . 24

Communication Callbacks . 24

Serial Communication . 25

JTAG-based Parallel Communication 26

Framework Integration and Execution 27

Principal Framework Calls . 27

Control Callback . 31

Target Mode Switching . 32

Simulation Start and Termination 33

Control Dispatching . 34

Task Synchronization at Start of Simulation 36

Framework Configuration . 37

Configuration Constants . 38

Initialization Constants . 38

3 TI C2000 Peripheral Models 41
Introduction . 41

Enhanced Pulse Width Modulator (ePWM) Type 1 43

Supported Submodules and Functionalities 44

Time-Base (TB) Submodule . 45

Initialization and Synchronization 46

Counter-Compare (CC) Submodule 48

Action-Qualifier (AQ) Submodule . 49

Event-Trigger (ET) Submodule . 53

Dead-Band Submodule . 55

Enhanced Pulse Width Modulator (ePWM) Type 4 57

Supported Submodules and Functionalities 58

Time-Base (TB) Submodule . 59

Initialization and Synchronization 60

iv

Contents

Counter-Compare (CC) Submodule 63

Action-Qualifier (AQ) Submodule . 64

Event-Trigger (ET) Submodule . 68

Dead-Band Submodule . 71

Analog Digital Converter (ADC) Type 2 74

ADC Module Overview . 75

ADC Converter with Result Registers 76

ADC Sampling Mode . 77

ADC Sequencer Mode . 78

ADC Trigger and Interrupt Logic . 80

Summary of PLECS Implementation 81

Analog Digital Converter (ADC) Type 3 83

ADC Module Overview . 84

ADC Converter with Result Registers 85

ADC Reference Voltage Generator 85

ADC Sample Generation Logic . 86

ADC Input Circuit . 89

ADC Interrupt Logic . 90

Analog Digital Converter (ADC) Type 4 92

ADC Module Overview . 94

ADC Converter and Result Register 94

ADC SOC Arbitration & Control . 96

ADC Input Circuit . 99

ADC Interrupt Logic . 100

Post-Processing Blocks . 102

Enhanced Capture (eCAP) Type 0 . 107

eCAP Module Operated in Capture Mode 108

Event Prescaler . 108

Edge Polarity Select and Capture Control 109

eCAP Module Operated in APWM Mode 110

eCAP Interrupts . 110

v

Contents

eCAP Counter Update . 111

Summary of PLECS Implementation 111

Enhanced Quadrature Encoder Pulse (eQEP) Type 0 112

Encoder . 112

eQEP Module Overview . 114

Quadrature Decoder Unit . 114

Position Counter and Control Unit 116

Position Counter Reset on Index Event 116

Position Counter Reset on Max Position 117

Position Counter Reset on First Index Event 118

Position Compare Unit . 119

Edge Capture Unit . 119

eQEP Interrupt . 122

Summary of PLECS Implementation 123

4 STM32 F0xx Peripheral Models 125
Introduction . 125

System Timer for PWM Generation (Output Mode) 127

Timer Subtypes . 128

General Counter Behavior . 128

Initialization and Synchronization 131

Interrupt Flags . 131

Output Mode Controller . 132

4 Channel Advanced Timer . 134

4 Channel General Purpose Timer 137

2 Channel Complementary GP Timer with Deadtime 139

1 Channel Complementary GP Timer with Deadtime 142

1 Channel General Purpose Timer 145

GPIO Mode . 147

Analog-Digital Converter (ADC) . 148

ADC Module Overview . 149

vi

Contents

ADC Converter with Result Registers 150

ADC Sample Logic . 152

ADC Trigger and Register Write Latency 154

ADC Interrupt Logic . 155

5 STM32 F1xx Peripheral Models 157

Introduction . 157

System Timer for PWM Generation (Output Mode) 159

Timer Subtypes . 160

General Counter Behavior . 160

Initialization and Synchronization 163

Interrupt Flags . 163

Output Mode Controller . 164

4 Channel Advanced Timer . 166

4 Channel General Purpose Timer 169

2 Channel Complementary GP Timer with Deadtime 171

1 Channel Complementary GP Timer with Deadtime 174

2 Channel General Purpose Timer 177

1 Channel General Purpose Timer 179

GPIO Mode . 181

Analog-Digital Converter (ADC) . 182

ADC Module Overview . 183

ADC Converter with Result Registers 184

ADC Sample Logic . 184

ADC Interrupt Logic . 188

vii

Contents

6 STM32 F3xx Peripheral Models 191
Introduction . 191

System Timer for PWM Generation (Output Mode) 193

Timer Subtypes . 194

General Counter Behavior . 194

Initialization and Synchronization 197

Interrupt Flags . 197

Output Mode Controller and Output Selector 198

6 Channel Advanced Timer . 200

4 Channel General Purpose Timer 203

2 Channel General Purpose Timer 205

1 Channel General Purpose Timer 208

GPIO Mode . 210

Analog-Digital Converter (ADC) . 211

ADC Module Overview . 212

ADC Converter with Result Registers 213

ADC Sample Logic . 215

ADC Interrupt Logic . 220

7 STM32 F2xx/F4xx Peripheral Models 223
Introduction . 223

System Timer for PWM Generation (Output Mode) 225

Timer Subtypes . 226

General Counter Behavior . 226

Initialization and Synchronization 229

Interrupt Flags . 229

Output Mode Controller . 230

4 Channel Advanced Timer . 232

4 Channel General Purpose Timer 234

2 Channel General Purpose Timer 236

1 Channel General Purpose Timer 237

viii

Contents

GPIO Mode . 239

Analog-Digital Converter (ADC) . 240

ADC Module Overview . 241

ADC Converter with Result Registers 242

ADC Sample Logic . 243

ADC Interrupt Logic . 248

8 Microchip dsPIC33F Peripheral Models 251

Introduction . 251

Microchip Motor Control PWM . 253

MCPWM Module Overview . 254

PWM Clock Control . 255

PWM Output Control and Resolution 257

PWM Output Override . 258

Special Event Trigger . 260

Interrupt Control . 261

Dead Time Generator . 261

Summary of PLECS Implementation 263

Microchip Motor Control ADC . 264

MCADC Module Overview . 265

ADC Configuration . 266

ADC Sampling and Conversion . 268

Multi-channel ADC Sampling Mode 269

ADC Input Selection Mode . 271

ADC Interrupt Logic . 273

ADC Buffer Fill Mode . 274

Summary of PLECS Implementation 274

ix

Contents

9 Infineon XMC1xxx Peripheral Models 277
Introduction . 277

CCU 4 Single Timer Slice (Compare Mode) 279

Model overview . 280

Timer Slice Core Functions . 280

Timer Slice Input Path . 284

Slice Connection Matrix . 286

Timer Slice Output Path . 287

Timer Slice Advanced Functions . 289

Timer Slice Interrupt generation . 289

Timer Slice Flag Signals . 289

CCU 8 Single Timer Slice (Compare Mode) 290

Model overview . 291

Timer Slice Core Functions . 291

Timer Slice Compare Modes and ST generation 295

Timer Slice Dead Time Generator 296

Timer Slice Input Path . 298

Slice Connection Matrix . 300

Timer Slice Output Path . 302

Timer Slice Advanced Functions . 305

Timer Slice Interrupt generation . 306

Timer Slice Flag Signals . 306

10 Components by Category 309
Peripheral Blocks Infineon XMC1000 . 309

Peripheral Blocks TI C2000 . 309

Peripheral Blocks STM32 F0 . 310

Peripheral Blocks STM32 F1 . 311

Peripheral Blocks STM32 F3 . 311

Peripheral Blocks STM32 F2/F4 . 312

Peripheral Blocks Microchip dsPIC33F 312

x

Contents

11 Component Reference 313
Infineon XMC1000 CCU4 Slice Compare Mode GUI 314

Infineon XMC1000 CCU4 Slice Compare Mode REG 317

Infineon XMC1000 CCU8 Slice Compare Mode GUI 320

Infineon XMC1000 CCU8 Slice Compare Mode REG 325

TI C2000 ADC Type 2 GUI . 328

TI C2000 ADC Type 2 REG . 330

TI C2000 ADC Type 3 GUI . 332

TI C2000 ADC Type 3 REG . 334

TI C2000 ADC Type 3 Simplified . 336

TI C2000 ADC Type 4 GUI . 338

TI C2000 ADC Type 4 REG . 341

TI C2000 eCAP Type 0 APWM GUI . 344

TI C2000 eCAP Type 0 CAP GUI . 345

TI C2000 eCAP Type 0 CAP REG . 347

TI C2000 ePWM Type 1 Configurator . 348

TI C2000 ePWM Type 1 GUI . 350

TI C2000 ePWM Type 1 REG . 354

TI C2000 ePWM Type 4 Configurator . 357

TI C2000 ePWM Type 4 GUI . 360

TI C2000 ePWM Type 4 REG . 364

TI C2000 eQEP Type 0 GUI . 367

TI C2000 eQEP Type 0 REG . 371

STM32 F0 ADC GUI . 374

STM32 F0 ADC REG . 376

STM32 F0 Timer Output Configurator 378

STM32 F0 Timer Output GUI . 379

STM32 F0 Timer Output REG . 382

STM32 F1 ADC GUI . 384

STM32 F1 ADC REG . 386

STM32 F1 Timer Output Configurator 388

xi

Contents

STM32 F1 Timer Output GUI . 389

STM32 F1 Timer Output REG . 392

STM32 F3 ADC GUI . 394

STM32 F3 ADC REG . 397

STM32 F3 Timer Output Configurator 399

STM32 F3 Timer Output GUI . 401

STM32 F3 Timer Output REG . 404

STM32 F2/F4 ADC GUI . 406

STM32 F2/F4 ADC REG . 409

STM32 F2/F4 Timer Output Configurator 411

STM32 F2/F4 Timer Output GUI . 412

STM32 F2/F4 Timer Output REG . 415

MC dsPIC33F MCADC GUI . 417

MC dsPIC33F MCADC REG . 420

MC dsPIC33F MCPWM Configurator . 422

MC dsPIC33F MCPWM GUI . 423

MC dsPIC33F MCPWMx GUI . 426

MC dsPIC33F MCPWM REG . 429

Processor-in-the-Loop . 431

1

Contents

2

Before You Begin

Installing the PIL Demo Projects

The PLECS PIL package includes a number of demo projects to facilitate get-
ting started with PIL. These demo projects implement typical power conver-
sion applications such as motor drives and grid-tied inverters and are config-
ured for different microprocessors.

Note A separate license is required to enable the PIL functionality in PLECS
and access the PIL demo projects.

To install the demo projects and associated documentation in a location of
your choice select PLECS Extensions. . . from the File menu. Then, on the
PIL tab, configure the desired destination folder (PIL Framework Path) and
install the packages of interest.

Note Make sure you install the Tools package as it contains the PIL Prep
Tool – see “PIL Prep Tool” (on page 18) – which is required by most demo
projects.

Included with the PIL demo projects are precompiled binaries as well as com-
plete source code projects that can be imported into the appropriate IDE.

The source code of the PIL framework library can be obtained upon request.

Before You Begin

What’s New in this Version

Major New Features

• Support added for communication over JTAG (via GDB server).

Further Enhancements

• API modified for object-based instantiation of framework.

4

1

Processor-in-the-Loop

As a separately licensed feature, PLECS offers support for Processor-in-the-
Loop (PIL) simulations, allowing the execution of control code on external
hardware tied into the virtual world of a PLECS model.

At the PLECS level, the PIL functionality consists of a specialized PIL block
that can be found in the Processor-in-the-loop library, as well as the Target
Manager, accessible from the Window menu. Also included with the PIL
library are high-fidelity peripheral models of MCUs used for the control of
power conversion systems.

On the embedded side, a PIL Framework library is provided to facilitate the
integration of PIL functionality into your project.

Motivation

When developing embedded control algorithms, it is quite common to be test-
ing such code, or portions thereof, by executing it inside a circuit simulator.
Using PLECS, this can be easily achieved by means of a C-Script or DLL
block. This approach is referred to as Software-in-the-loop (SIL). A SIL sim-
ulation compiles the embedded source code for the native environment of the
simulation tool (e.g. Win64) and executes the algorithms within the simulation
environment.

The PIL approach, on the other hand, executes the control algorithms on the
real embedded hardware. Instead of reading the actual sensors of the power
converter, values calculated by the simulation tool are used as inputs to the
embedded algorithm. Similarly, outputs of the control algorithms executing
on the processor are fed back into the simulation to drive the virtual environ-
ment. Note that SIL and PIL testing are also relevant when the embedded
code is automatically generated from the simulation model.

1 Processor-in-the-Loop

One of the major advantages of PIL over SIL is that during PIL testing, ac-
tual compiled code is executed on the real MCU. This allows the detection of
platform-specific software defects such as overflow conditions and casting er-
rors. Furthermore, while PIL testing does not execute the control algorithms
in true real-time, the control tasks do execute at the normal rate between two
simulation steps. Therefore, PIL simulation can be used to detect and ana-
lyze potential problems related to the multi-threaded execution of control algo-
rithms, including jitter and resource corruption. PIL testing can also provide
useful metrics about processor utilization.

How PIL Works

At the most basic level, a PIL simulation can be summarized as follows:

Principle of a PIL simulation

• Input variables on the target, such as current and voltage measurements,
are overridden with values provided by the PLECS simulation.

• The control algorithms are executed for one control period.
• Output variables on the target, such as PWM peripheral register values,

are read and fed back into the simulation.

6

How PIL Works

We refer to variables on the target which are overridden by PLECS as Over-
ride Probes. Variables read by PLECS are called Read Probes.

While Override Probes are set and Read Probes are read the dispatching of
the embedded control algorithms must be stopped. The controls must remain
halted while PLECS is updating the simulated model. In other words, the con-
trol algorithm operates in a stepped mode during a PIL simulation. However,
as mentioned above, when the control algorithms are executing, their behavior
is identical to a true real-time operation. We therefore call this mode of opera-
tion pseudo real-time.

Let us further examine the pseudo real-time operation in the context of an
embedded application utilizing nested control loops where fast high-priority
tasks (such as current control) interrupt slower lower-priority tasks (such as
voltage control). An example of such a configuration with two control tasks is
illustrated in the figure below. With every hardware interrupt (bold vertical
bar), the lower priority task is interrupted and the main interrupt service rou-
tine is executed. In addition, the lower priority task is periodically triggered
using a software interrupt. Once both control tasks have completed, the sys-
tem continues with the background task where lowest priority operations are
processed. The timing in this figure corresponds to true real-time operation.

Control Task 1

Control Task 2

Background Task

1 2 3 4 5 6

Nested Control Tasks

The next figure illustrates the timing of the same controller during a PIL sim-
ulation, with the stop and go symbols indicating when the dispatching of the
control tasks is halted and resumed.

After the hardware interrupt is received, the system stops the control dis-
patching and enters a communication loop where the values of the Override
Probes and Read Probes can be exchanged with the PLECS model. Once a
new step request is received from the simulation, the task dispatching is

7

1 Processor-in-the-Loop

Control Task 1

Control Task 2

Background Task

2 3

STOP

1

STOP STOP

Pseudo real-time operation

restarted and the control tasks execute freely during the duration of one in-
terrupt period. This pseudo real-time operation allows the user to analyze the
control system in a simulation environment in a fashion that is behaviorally
identical to a true real-time operation. Note that only the dispatching of the
control tasks is stopped. The target itself is never halted as communication
with PLECS must be maintained.

PIL Modes

The concept of using Override Probes and Read Probes allows tying actual
control code executing on a real MCU into a PLECS simulation without the
need to specifically recompile it for PIL.

You can think of Override Probes and Read Probes as the equivalent of test
points which can be left in the embedded software as long as desired. Soft-
ware modules with such test points can be tied into a PIL simulation at any
time.

Often, Override Probes and Read Probes are configured to access the registers
of MCU peripherals, such as analog-to-digital converters (ADCs) and pulse-
width modulation (PWM) modules. Additionally, specific software modules, e.g.
a filter block, can be equipped with Override Probes and Read Probes. This
allows unit-testing the module in a PIL simulation isolated from the rest of
the embedded code.

To permit safe and controlled transitions between real-time execution of the
control code, driving an actual plant, and pseudo real-time execution, in con-

8

Configuring PLECS for PIL

junction with a simulated plant, the following two PIL modes are distin-
guished:

• Normal Operation – Regular target operation in which PIL simulations
are inhibited.

• Ready for PIL – Target is ready for a PIL simulation, which corresponds
to a safe state with the power-stage disabled.

The transition between the two modes can either be controlled by the embed-
ded application, for example based on a set of digital inputs, or from PLECS
using the Target Manager.

Configuring PLECS for PIL

Once an embedded application is equipped with the PIL framework, and ap-
propriate Override Probes and Read Probes are defined, it is ready for PIL
simulations with PLECS.

PLECS uses the concept of Target Configurations to define global high-level
settings that can be accessed by any PLECS model. At the circuit level, the
PIL block is utilized to define lower level configurations such as the selection
of Override Probes and Read Probes used during simulation.

This is explained in further detail in the following sections.

Target Manager

The high-level configurations are made in the Target Manager, which is ac-
cessible in PLECS by means of the corresponding item in the Window menu.
The target manager allows defining and configuring targets for PIL simula-
tion, by associating them with a symbol file and specifying the communication
parameters. Target configurations are stored globally at the PLECS level and
are not saved in *.plecs or Simulink files. An example target configuration is
shown in the figure below.

9

1 Processor-in-the-Loop

Target Manager

The left hand side of the dialog window shows a list of targets that are cur-
rently configured. To add a new target configuration, click the button marked
+ below the list. To remove the currently selected target, click the button
marked -. You can reorder the targets by clicking and dragging an entry up
and down in the list.

The right hand side of the dialog window shows the parameter settings of
the currently selected target. Each target configuration must have a unique
Name.

The target configuration specifies the Symbol file and the communication
link settings.

The symbol file is the binary file (also called “object file”) corresponding to the
code executing on the target. PLECS will obtain most settings for PIL simu-
lations, as well as the list of Override Probes and Read Probes and their at-
tributes, from the symbol file.

Communication Links

A number of links are supported for communicating with the target. The de-
sired link can be selected in the Device type combo box. For communication
links that allow detecting connected devices, pressing the Scan button will
populate the Device name combo box with the names of all available devices.

10

Target Manager

Serial Device

The Serial device selection corresponds to conventional physical or virtual
serial communication ports. On a Windows machine, such ports are labeled
COMn, where n is the number of the port.

FTDI Device

If the serial adapter is based on an FTDI chip, the low-level FTDI driver can
be used directly by selecting the FTD2XX option. This device type offers im-
proved communication speed over the virtual communication port (VCP) asso-
ciated with the FTDI adapter.

TCP/IP Socket

The communication can also be routed over a TCP/IP socket by selecting the
TCP Socket device type.

TCP/IP Communication

In this case the Device name corresponds to the IP address (or URL) and
port number, separated by a colon (:).

11

1 Processor-in-the-Loop

Serial over GDB

The Serial over GDB device type is used in conjunction with communica-
tion over JTAG. It requires that a GDB server be running and connected to
the embedded target. The configuration of this device is similar to the TCP
Socket and consists of specifying a URL (typically the localhost 127.0.0.1) and
a TCP/IP port. Please review the documentation of your GDB server for more
information regarding port settings.

Target Properties

By pressing the Properties button, target information can be displayed as
shown in the figure below.

Target Properties

In addition to reading and displaying information from the symbol file, PLECS
will also query the target for its identity and check the value against the one
stored in the symbol file. This verifies the device settings and ensures that the
correct binary file has been selected. Further, the user can request for a target
mode change to configure the embedded code to run in Normal Operation
mode or in Ready for PIL mode.

PIL Block

The PIL block ties a processor into a PLECS simulation by making Override
Probes and Read Probes, configured on the target, available as input and out-

12

PIL Block

put ports, respectively.

PIL Block

A PIL block is associated with a target defined in the target manager, which
is selected from the Target combo box. The Configure. . . button provides a
convenient shortcut to the target manager for configuring existing and new
targets.

PIL Block General Tab

The execution of the PIL block can be triggered at a fixed Discrete-Periodic
rate by configuring the Sample time to a positive value. As with other
PLECS components, an Inherited sample time can be selected by setting the
parameter to -1 or [-1 0].
A trigger port can be enabled using the External trigger combo box. This is
useful if the control interrupt source is part of the PLECS circuit, such as an

13

1 Processor-in-the-Loop

ADC or PWM peripheral model.

Typically, an Inherited sample time is used in combination with a trigger
port. If a Discrete-Periodic rate is specified, the trigger port will be sampled
at the specified rate.

Similar to the DLL block, the Output delay setting permits delaying the out-
put of each simulation step to approximate processor calculation time.

Note Make sure the value for the Output delay does not exceed the sample
time of the block, or the outputs will never be updated.

A delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

PIL Block Inputs Tab

The PIL block extracts the names of Override Probes and Read Probes from
the symbol file selected in the target configuration and presents lists for selec-
tion as input and output signals, as shown in the figure above.

14

PIL Block

The number of inputs and outputs of a PIL block is configurable with the
Number of inputs and Number of outputs settings. To associate Over-
ride Probes or Read Probes with a given input or output, select an input/out-
put from the combo box on the right half of the dialog. Then drag the desired
Override Probes or Read Probes from the left into the area below or add them
by selecting them and clicking the > button. To remove an Override Probe or
Read Probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several Override/Read Probe signals into one
input/output. The sequence can be reordered by dragging the signals up and
down the list.

Starting with PLECS 3.7, the PIL block allows setting initial conditions for
Override Probes.

Also new with PLECS 3.7 is the Calibrations tab, which permits modifying
embedded code settings such as regulator gains and filter coefficients.

PIL Block Calibrations Tab

15

1 Processor-in-the-Loop

Calibrations can be set in the Value column. If no entry is provided, the em-
bedded code will use the default value as indicated in the Default column.

16

2

PIL Framework

Plexim provides and maintains PIL Frameworks for specific processor families,
which encapsulate all the necessary embedded functionality for PIL operation.
Using the PIL framework, your C or C++ based embedded applications can be
enabled for PIL with minimal effort.

Currently, such frameworks and associated demo applications are available for
the Texas Instruments (TI) C2000™ and Microchip dsPIC33F MCU families,
as well as ARM® Cortex®-M based MCUs such as STM32F and Infineon XMC
devices. However, support for other platforms can be developed, as long as the
following basic requirements are met:

• The code generation tools (compiler and linker) must be able to generate
binary files of the ELF format containing DWARF debugging information.

• The address width of the processor cannot exceed 32 bit.
• The least addressable unit (LAU) of the processor must be no larger than

16-bit.

Overview

The fundamental operation of a PIL simulation consists of overriding and
reading variables in the embedded application, and synchronizing the exe-
cution of the control task(s) with the simulation of a PLECS model. The PIL
framework therefore provides the following functionality:

• Read Probes for reading the values of variables in the embedded code exe-
cuting on the target and feeding the information into the simulation model.

• Override Probes for overriding variables in the embedded code with values
obtained from the simulation.

• A method to uniquely identify the software executing on the target.

2 PIL Framework

• A remote agent, capable of communicating with PLECS and interpreting
commands related to PIL operation.

• A mechanism for stopping and starting the execution of the control tasks.
• A means to provide configuration parameters to PLECS, such as the com-

munication baudrate.

Starting with PLECS 3.7, the PIL framework also supports Calibrations,
which are embedded–code parameters such as filter coefficients and regula-
tor gains. Calibrations can be modified in the PLECS environment during the
initialization of a PIL simulation and allow running multiple simulations with
different settings without the need for recompiling the embedded code (e.g. for
the tuning of regulators).

PIL Prep Tool

To facilitate defining and configuring PIL probes and calibrations, starting
with PLECS 3.7, a PIL Prep Tool utility is provided as part of the PIL frame-
work.

The PIL Prep Tool parses the embedded code for PIL specific macros, and au-
tomatically generates auxiliary files to be compiled and linked with the em-
bedded code. These auxiliary files contain functions for initializing probes and
calibrations, as well as special symbols which describe to PLECS the scaling
and formatting of the probes/calibrations. The generated files further include
a globally unique identifier (GUID) allowing PLECS to identify the embedded
code.

The PIL Prep Tool must be called as a pre-build step. Its integration into an
embedded project is specific to the compiler and integrated development envi-
ronment (IDE) used. Please refer to the PIL demo projects for more informa-
tion.

Probes

Read Probes

Read Probes are variables in the embedded code which are configured for read
access by PLECS. Any global variable can be configured as a Read Probe by
means of the PIL_READ_PROBE macro. For example, the statement below de-
fines and configures variable Vdc for read access by PLECS.

18

Probes

PIL_READ_PROBE(uint16_t , Vdc, 10, 5.0, "V");

The PIL_READ_PROBE macro results in a simple variable definition, e.g.
uint16_t Vdc, but is also recognized by the PIL Prep Tool, which places the
following statement in the auto generated file:

PIL_SYMBOL_DEF(Vdc, 10, 5.0, "V");

The PIL_SYMBOL_DEF macro expands into the definition of a specially format-
ted and statically initialized helper structure of type const.

typedef struct
{

int q; //!< fixed−point location
float ref; //!< reference value
char *unit; //!< unit string

} pil_var;

const pil_var PIL_V_Vdc = {10, 5.0, "V"}

PLECS searches for PIL_V symbols when parsing the binary file selected in
the target manager, and uses the information of the PIL_V symbols to trans-
late between the raw values stored in the Read Probe and the corresponding
physical value to be used in the simulation.
In the above example, the global variable Vdc is configured as a Q10 with a
reference of 5V. Hence, an integer value of 512 in this variable will be con-
verted by PLECS to 512

210 ∗ 5V = 2.5V.
A fixed point variable can be configured as a unitless number by using a refer-
ence value of 1.0 and setting an empty string (“”) for the unit.
The same approach can be used to configure floating point variables as Read
Probes.

PIL_READ_PROBE(float, MotorSpeed, 0, 1.0, "rpm");

The third parameter of the PIL_READ_PROBE macro, i.e. the fixed point loca-
tion, is ignored with probed floating point variables. However, it is possible to
specify reference values for floating point variables. For example, the macro
below configures MotorSpeed with a reference of 1800 rpm. Hence, a value of
0.5 in this variable will be converted to 0.5 ∗ 1800rpm = 900rpm.
It is also possible to configure structure members, as shown below.

19

2 PIL Framework

struct BATTERY {
PIL_READ_PROBE(int16_t, voltage, 10, 5.0, "V");

};

Override Probes

Override Probes, i.e. variables in the embedded code that can be overridden by
PLECS, are defined with the PIL_OVERRIDE_PROBE macro as illustrated below.

struct BATTERY {
PIL_OVERRIDE_PROBE(int16_t, voltage, 10, 5.0, "V");

};

struct BATTERY MyBattery;

The PIL_OVERRIDE_PROBE macro expands into a variable definition that is aug-
mented by two helper symbols which permit the MyBattery.voltage variable
to be overridden by PLECS.

struct BATTERY {
int16_t voltage;
int16_t voltage_probeV;
int16_t voltage_probeF;

};

While parsing a binary file for symbol information, PLECS detects variables
with matching _probeF and _probeV definitions and identifies those as Over-
ride Probes.

In addition, the PIL Prep Tool will recognize the PIL_OVERRIDE_PROBE macro
and generate the following auxiliary macro as described in the Read Probe
section:

PIL_SYMBOL_DEF(MyBattery_voltage, 10, 5.0, "V");

Note Only variables defined as Override Probes are configurable as inputs for
the PIL block.

20

Probes

An Override Probe is similar to a toggle switch with the following two states:

• Feedthrough – The Override Probe value is provided by the embedded ap-
plication

• Override – The Override Probe value is provided by PLECS

The state of an Override Probe can be switched dynamically at runtime and is
stored in the _probeF helper variable.

With this approach, the same build of the embedded application can be used
to control actual hardware or be tested in a PIL simulation, by simply switch-
ing the mode of Override Probes, without recompiling.

To properly interact with PLECS, the embedded code must access the Over-
ride Probes exclusively by the following set of macros:

Override Probe Macros

Macro Description

INIT_OPROBE(probe) Initializes an Override Probe.
Must be called during the ini-
tialization of the embedded
program.

SET_OPROBE(probe, value) Assigns a value to an Override
Probe.

The PIL Prep Tool will generate a function called PilInitOverrideProbes()
which contains INIT_OPROBE calls for all Override Probes. This function must
be called during the initialization phase of the embedded code before any
Override Probes are used.

If an Override Probe is in the feedthrough state, the value assigned to the
macro is written into probe. Otherwise, the override value supplied by
PLECS is used, which is stored in the _probeV helper variable.

An example for adding Override Probes to existing code is given in the follow-
ing two listings.

21

2 PIL Framework

Battery.voltage = measureBattVolt();

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&ControlVars.Id, &ControlVars.Iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

Original code without use of Override Probes

Assume that during PIL simulations, we would like to override the vari-
able Battery.voltage as well as the values of ControlVars.Id and
ControlVars.Iq. While the battery voltage is updated by a simple write ac-
cess, the Id and Iq variables are modified by the PLX_VECT_parkRot(...) func-
tion via pointers, which need special handling for the SET_OPROBE macro inte-
gration.

The next listing illustrates how SET_OPROBE is properly used in this example.

SET_OPROBE(Battery.voltage, measureBattVolt());

int16_t id, iq;

PLX_VECT_parkRot(ControlVars.Ia, ControlVars.Ib, \
&id, &iq, \
ControlVars.fluxPosSin, ControlVars.fluxPosCos);

SET_OPROBE(ControlVars.Id, id);
SET_OPROBE(ControlVars.Iq, iq);

Use of Override Probes

For the battery voltage, the assignment can simply be replaced by the
SET_OPROBE macro. For the Id and Iq values, auxiliary variables are used,
updated by the PLX_VECT_parkRot(...) function, and subsequently assigned
to the Override Probes.

Note The SET_OPROBE macro must be used whenever a value is assigned to an
Override Probe. A direct assignment using the equal (=) statement will result in
unpredictable behavior.

22

Calibrations

Calibrations

Calibrations are variables used to configure algorithms in the embedded code,
such as filter coefficients, thresholds, timeouts and regulator gains.

The PIL framework provides the PIL_CALIBRATION macro for a convenient def-
inition of such calibrations. For example, the statement below declares and
configures variable Kp as a PIL calibration.

PIL_CALIBRATION(int16_t, Kp, 10, 5.0, "Ohm", 0, 10.0, 0.5);

The first five parameters of the PIL_CALIBRATION macro are identical to the
definition of a Read Probe. Accordingly, the macro expands into a simple vari-
able definition uint16_t Kp.

The additional three parameters define the allowable range of values for the
Calibration as well as its default value.

In the above example, the allowable range for Kp is 0 – 10Ω. Upon initializa-
tion, Kp is set to 0.5Ω.

The PIL_CALIBRATION macro is interpreted by the PIL Prep Tool to gener-
ate a PIL_SYMBOL_CAL_DEF macro. Similar to PIL_SYMBOL_DEF, this macro
produces the necessary information for PLECS to properly interpret and
handle the calibration. The PIL Prep Tool also generates a function called
PilInitCalibrations() which sets all Calibrations to default values. This
function must be called during the initialization phase of the embedded code
before any calibrations are used. It is also important that this function be
called in the PIL_CLBK_TERMINATE_SIMULATION callback to revert changes
made during a PIL simulation.

Code Identity

PLECS accesses Override Probes, Read Probes and Calibrations by address
(as opposed to name). The PIL block extracts the address of a given variable
from the debugging information contained in the binary file supplied to the
Target Manager. It is therefore important to ensure the selected binary file
matches the code that is actually executing on the target, or erroneous mem-
ory locations will be accessed. This is achieved by comparing a globally unique

23

2 PIL Framework

identifier (GUID) stored in the binary file with the value reported by the tar-
get. PLECS performs this check at the beginning of a simulation, as well as
when the PIL block is opened. As explained in section “Target Manager” (on
page 9), the target manager can be used to verify the match of the selected
binary file.

The GUID is generated at compile time by the PIL Prep Tool. Additionally,
macros for the compile time, and log-on name of the person who compiled the
code are created.

#define CODE_GUID {0xA8,0x45,0x11,0xDE,0x05,0x4C,0xAC,0x41}
#define COMPILE_TIME_DATE_STR "Sun May 30 10:11:43 2010"
#define USER_NAME "john doe"

The value of CODE_GUID is passed to the PIL framework during initialization;
see “Framework Configuration” (on page 37). The value must also be assigned
to the PIL_D_Guid constant as follows:

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);

The other two macros can be used for diagnostics purposes using PIL con-
stants, as demonstrated in section “Configuration Constants” (on page 38).

Remote Agent

The remote agent services the communication link with PLECS and processes
commands received from PLECS to access Override Probes and Read Probes,
and to step the control code during a PIL simulation.

The user of the PIL framework is generally responsible for implementing the
driver for a specific communication link, i.e. for configuration of hardware and
basic reception and transmission of data.

Communication Callbacks

The PIL framework interacts with the application specific communication
driver by communication callback functions.

24

Remote Agent

Two callbacks exist:

• CommCallback(...) – Called at each system interrupt from
PIL_beginInterruptCall(...).

• BackgroundCommCallback(...) – Periodically called from
PIL_backgroundCall(...).

A given communication link might use either or both callbacks for its im-
plementation. For realizing the data exchange with the framework, the user
needs to utilize the serial input and output functions presented in the follow-
ing section. The callback functions are registered with the framework as de-
scribed on page 37.

Serial Communication

The remote agent utilizes a simple network layer with message framing and
error checking, making the protocol suitable for a wide range of serial commu-
nication links such as RS-232, RS-485, TCP/IP and CAN.

To ensure no characters are dropped during a serial communication, the Comm-
Callback() from the interrupt should be used to service the link.

A typical implementation of a serial communication callback is shown in the
SCI callback listing.

void SCIPoll(PIL_Handle_t pilHandle)
{

while(SciaRegs.SCIFFRX.bit.RXFFST != 0)
{
// a character has been received
PIL_RA_serialIn(pilHandle, (int16)SciaRegs.SCIRXBUF.all);

}

int16_t ch;
if(SciaRegs.SCICTL2.bit.TXRDY == 1)
{
// link is ready for transmission
if(PIL_RA_serialOut(pilHandle, &ch))
{
SciaRegs.SCITXBUF = ch;

}
}

}

SCI callback

25

2 PIL Framework

Notice the use of the following two functions:

• PIL_RA_serialIn(...) – For the reception of characters.
• PIL_RA_serialOut(...) – For the transmission of characters.

JTAG-based Parallel Communication

Starting with PLECS 4.2, the PIL framework also supports communication
over JTAG by means of a memory-based parallel data exchange. This com-
munication mode is substantially slower than a typical serial link, but can be
useful for embedded targets that do not include peripherals/drivers for serial
communication.

The implementation of this limited bandwidth communication mode is fully
integrated with the PIL framework and does not require the user to provide
any communication callbacks.

However, the application has to allocate a buffer in MCU memory for the data
exchange and instruct PLECS of its location by means of Configuration Con-
stants - see section “Configuration Constants” (on page 38).

#define PARALLEL_COM_PROTOCOL 2
#define PARALLEL_COM_BUF_ADDR 0x20004000
#define PARALLEL_COM_BUF_LEN 0x100

PIL_CONST_DEF(uint16_t, ParallelComProtocol, PARALLEL_COM_PROTOCOL);
PIL_CONST_DEF(uint32_t, ParallelComBufferAddress, PARALLEL_COM_BUF_ADDR);
PIL_CONST_DEF(uint16_t, ParallelComBufferLength, PARALLEL_COM_BUF_LEN);
PIL_CONST_DEF(uint16_t, ParallelComTimeoutMs, 200);
PIL_CONST_DEF(uint16_t, ExtendedComTimingMs, 2000);

Parallel Communication Configuration

Two protocols for JTAG-based parallel communication are provided by the PIL
Framework:

1 JTAG access to MCU memory is made without halting the processor.

2 The processor is halted for each message exchange.

The proper choice of the protocol depends on the MCU architecture, type of
emulator and associated GDB server. In case of C2000™ MCUs, the selection
of protocol 1 in conjunction with C2Prog and TI emulators is recommended.
For ARM® Cortex®-M based MCUs, debugged in conjunction with Segger or

26

Framework Integration and Execution

OpenOCD software/hardware, protocol 2 typically achieves a higher communi-
cation throughput.

Also shown in the listing above are communication timing parameters with
typical values for JTAG-based communication.

The PIL framework is configured for JTAG-based parallel configuration as fol-
lows. See also section “Framework Configuration” (on page 37).

PIL_configureParallelCom(PilHandle, PARALLEL_COM_PROTOCOL,
PARALLEL_COM_BUF_ADDR, PARALLEL_COM_BUF_LEN);

Framework Integration and Execution

Principal Framework Calls
The PIL framework provides the following two principal functions which must
be called periodically by the embedded application to enable PIL functionality:

• PIL_beginInterruptCall(...) – Framework call from interrupt.
• PIL_backgroundCall(...) – Framework call from background loop.

The PIL_beginInterruptCall(...) must be added at the beginning of the
main interrupt service routine, while the PIL_backgroundCall(...) is called
periodically from the background task.

The actions performed by those calls depends on whether a PIL simulation is
running or not.

Real-time Pseudo Real-time

PIL_beginInterruptCall CommCallback CommCallback
BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

PIL_backgroundCall BackgroundCommClbk
Message Evaluation
PIL Cmd Handling

N/A

Mode-specific actions during framework execution

27

2 PIL Framework

In the following, the concept of the PIL integration is further illustrated for a
TI-RTOS based application with nested control tasks (see code snippet below).

Note The PIL framework does not equire the use of a real-time operating sys-
tem. A simple periodic interrupt and endless background loop are completely
adequate for the execution of the framework.

/**
* Main interrupt routine

*/
Void TickFxn(UArg arg)
{

PIL_beginInterruptCall(PilHandle);

// fast control task
ControlTask1();

// slow control task
divider++;
if(divider == TASK2_PERIOD)
{
divider = 0;
Swi_post(Swi);

}
}

/**
* Software interrupt for slow control task

*/
Void SwiFxn(UArg arg0, UArg arg1)
{

ControlTask2();
}

/**
* Background task

*/
Void BackgroundTaskFxn(Void)
{

PIL_backgroundCall(PilHandle);
}

Control Task Dispatching

28

Framework Integration and Execution

In this example, the first control task is triggered by a hardware interrupt re-
lated to the system counter. A divider is used to dispatch a second, lower pri-
ority task. When the divider reaches a specified value, the second control task
is dispatched by a software interrupt.

Assuming the slow task takes longer than a hardware interrupt period, the
second control task is interrupted several times before its execution is fin-
ished.

Now let us examine the operation of the framework in both real-time and
pseudo real-time mode.

The figure on page 29 shows the framework operation in non-PIL (real-time)
mode.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

CommCallback

PIL_backgroundCall

PIL framework during real-time operation

At the beginning of the hardware interrupt service routine, the
PIL_beginInterruptCall() is executed, which, in real-time mode, only calls
the registered CommCallback function. As already mentioned, this callback
should be used to service the link for a serial communication to ensure no
characters are dropped.

Note During real-time operation, the PIL framework must have a minimal
influence on the timing of the dispatched control tasks. Therefore the Comm-
Callback function must be implemented as efficiently as possible.

29

2 PIL Framework

As its name suggests, PIL_backgroundCall(...) function is executed from the
background loop, which in turn calls the BackgroundCommCallback(), if con-
figured. The PIL_backgroundCall(...) also parses incoming messages that
are buffered by the communication callback functions, and processes PIL com-
mands.

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PILCLBK_STOP_TIMERS CLBK_START_TIMERS

PLECS Step

Communication loop

STOP

PIL framework during pseudo real-time operation

The next figure shows the system behavior during a PIL simulation, i.e. in
pseudo real-time mode, where control task execution is paced and synchro-
nized with the simulation of a PLECS model.

At the start of the hardware interrupt service routine, the task dispatching
stops and the system enters a communication loop.

In this loop, both communication callbacks and the command parsing func-
tions are executed. This is different from true real-time mode, where the back-
ground communication callback and the command parsing functions are called
from the background loop.

Once a request for a new control step is received, the framework resumes
the control task dispatching and continues in free mode until the next
hardware interrupt occurs. Note that in pseudo real-time operation, the
PIL_backgroundCall() has no effect.

30

Framework Integration and Execution

Control Callback

The transition between different operating modes as well as the pseudo real-
time operation require application-specific actions, implemented by means of a
Control Callback.

For example, when entering the Ready for PIL mode, the power actua-
tion must be turned off, e.g. by disabling the PWM outputs. Also, during
a PIL simulation the peripherals providing the timing to the control algo-
rithms must be stopped and restarted, as indicated by the arrows labeled
PIL_CLBK_STOP_TIMERS and PIL_CLBK_START_TIMERS.

These control actions are provided by a single callback function registered dur-
ing the framework initialization, and subsequently executed with an argument
specifying the specific action to be taken.

Consequently, the implementation of this callback typically consists of a
switch statement as shown below:

void PilCallback(PIL_Handle_t pilHandle, PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_STOP_TIMERS:
//application specific code
break;

case PIL_CLBK_START_TIMERS:
//application specific code
break;
.
.
.

default:
//catching an undefined callback
break;

}
}

The following control-callback actions are defined and called during the frame-
work execution:

• PIL_CLBK_ENTER_NORMAL_OPERATION_REQ – Called when the tar-
get mode “Normal Operation” has been requested. The application
must indicate that it has entered normal operation by executing
PIL_inhibitPilSimulation(pilHandle).

31

2 PIL Framework

• PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ – Called when the tar-
get mode “Ready for PIL” has been requested. The application
must confirm that it is ready for PIL simulations by executing
PIL_allowPilSimulation(pilHandle).

• PIL_CLBK_PREINIT_SIMULATION – Called before transitioning to a PIL simu-
lation. Can be used to reconfigure task dispatching, for example if an MCU
coprocessor such as the TI CLA is to be tied into the PIL loop. Interrupts
are disabled when this call is made.

• PIL_CLBK_INITIALIZE_SIMULATION – Called at the beginning of a PIL simu-
lation. Used to reset the controller(s) and control task dispatching to initial
conditions.

• PIL_CLBK_TERMINATE_SIMULATION – Called at the end of a PIL simulation.
• PIL_CLBK_STOP_TIMERS – Called at the beginning of the control interrupt

when in PIL mode (pseudo real-time operation). Used to stop all timers and
counters related to the control tasks.

• PIL_CLBK_START_TIMERS – Called immediately before resuming the control
task(s) when in PIL mode (pseudo real-time operation). Used to restart all
timers and counters related to the control tasks.

In the following sections, the different actions are further described in context
of when they are called during the operation of the PIL framework. Please
also review the example projects provided by Plexim for further details and
control callback implementation examples.

Target Mode Switching

As described in the section “PIL Modes” (on page 8) the PIL framework distin-
guishes between the two target modes.

In Normal Operation mode, the target executes in true real-time operation
driving the load with an active power stage. PIL simulations are inhibited
in this mode due to the power stage being active. A PIL simulation can only
be started if the target is in Ready for PIL mode, which corresponds to a safe
state in which the power stage is disabled. As explained in the prior section,
the code for enabling or disabling the power stage is application specific and
must be provided by the user via the corresponding control callback.

A target mode change can be requested either from the Target Manager or
from the embedded application. Depending on the requested mode, the frame-
work executes the appropriate callback. If the requested mode is equal to the

32

Framework Integration and Execution

Normal Operation

do/Realtime Application

Ready for PIL

do/wait for start of PIL Simulation

PIL_allowPilSimulation() PIL_inhibitPilSimulation()

PIL_requestNormalMode
-> PIL_CLBK_ENTER_NORMAL_OPERATION_REQ

PIL_requestReadyMode
-> PIL_CLBK_LEAVE_NORMAL_OPERATION_REQ

PIL target modes and mode change requests

current mode or while a PIL simulation is active, a mode request has no ef-
fect.

Target mode change requests are confirmed by the application code by calling
the PIL_allowPilSimulation() and PIL_inhibitPilSimualtion() functions.
Those functions also have no effect while a PIL simulation is active. Please
refer to the example projects provided by Plexim for further details and imple-
mentation examples.

Simulation Start and Termination

When running multiple PIL simulations and comparing results it is impor-
tant that all simulation-runs begin with identical initial conditions. This is
achieved by means of the PIL_CLBK_INITIALIZE_SIMULATION request, which is
issued via the control callback at the beginning of a simulation.

33

2 PIL Framework

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Wait for 1. PIL Block Evaluation

First Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_INITIALIZE_SIMULATION

Start of PIL Simulation

Sending Initial Read Probe values

Start of a PIL Simulation

Note The initial conditions of Read Probes are fed into the PLECS model at
simulation time t=0. However, these values will be immediately modified if the
PIL block is also triggered at time t=0 and the output delay of the block is set to
zero.

At the end of a PIL simulation, a PIL_CLBK_TERMINATE_SIMULATION request is
issued prior to returning to real-time operation.

Control Dispatching

During a PIL simulation, the target operates in a pseudo real-time fashion
with the execution of the control tasks being paced and synchronized with the
simulation.

In the example shown in the next figure, the interrupt for Control Task 1 is
based on the period of a hardware timer. Therefore, the timer period directly
determines the amount of time available for the execution of the control tasks
until the next interrupt occurs.

34

Framework Integration and Execution

Control Task 1

Control Task 2

Background Task

PIL_beginInterruptCall

PIL_CLBK_STOP_TIMERS

Last Communication loop in Pseudo Real-time

STOP

Ready Mode

PIL_CLBK_TERMINATE_SIM

Sending Final Read Probes PIL Simulation Finished PIL_CLBK_START_TIMERS

End of a PIL Simulation

Control Task 1

Control Task 2

Background Task

1 2 3

Timer Counter

4 5 6

Real-time operation with timer

To preserve the timing integrity in stepped mode, the hardware timer needs
to be halted at the beginning of the communication loop and resumed when a
step request is received, resulting in pseudo real-time operation.

By means of the CLBK_STOP_TIMERS and CLBK_START_TIMERS callback
actions, the user is able to provide the necessary functionality specific to the
actual application.

35

2 PIL Framework

Control Task 1

Control Task 2

Background Task

Timer Counter

2 3

STOP

1

STOP STOP

Pseudo real-time operation with periodically stopped timer

Task Synchronization at Start of Simulation

When control algorithms are distributed over multiple (nested) tasks, it is im-
portant to synchronize the start of a PIL simulation with the sequencing of
the control tasks. In other words, after a PIL simulation has been started, a
predictable and repeatable amount of time should elapse until the first execu-
tion of each nested task.

Such synchronization can be achieved by actively resetting the task dispatcher
when the PIL_CLBK_INITIALIZE_SIMULATION request is received, as illustrated
below.

void PilCallback(PIL_CtrlCallbackReq_t aCallbackReq)
{
switch(aCallbackReq)
{

case PIL_CLBK_INITIALIZE_SIMULATION:
//application specific code
...
//active synchronization of control task dispatching
divider = TASK2PERIOD −1;
break;
.
.
.

36

Framework Configuration

default:
//catching an undefined callback
break;

}
}

Active task synchronization via simulation initialization callback

Framework Configuration

The PIL framework data and configurations are stored in a PIL object which
must be defined in the application that uses the framework.

/* PIL object */
PIL_Obj_t PilObj;
PIL_Handle_t PilHandle;

The initialization and configuration of the PIL framework consists of three
mandatory steps as well as a number of optional configurations.

// obtain handle to PIL framework
PilHandle = PIL_init(&PilObj, sizeof(PilObj));
// set globally unique identfier
PIL_setGuid(PilHandle, PIL_GUID_PTR);
// set control callback
PIL_setCtrlCallback(PilHandle, (PIL_CtrlCallbackPtr_t)PilCallback);

// set serial communication callback
PIL_setSerialComCallback(PilHandle, (PIL_CommCallbackPtr_t)ComPoll);

• PIL_init() – Must be executed before any calls to the framework are made.
• PIL_setGuid(...) – Specifies the GUID to the framework .
• PIL_setCtrlCallback(...) – Registers the control callback for PIL simula-

tions.
Typically, the framework is used in conjunction with a serial communication,
and configured as illustrated in the code snippet above.
Additionally, the serial communication has the following optional settings:

• PIL_setNodeAddress(...) – Configures node address for multi-drop serial
communications.

• PIL_setBackgroundCommCallback(...) – Registers the background commu-
nication callback.

37

2 PIL Framework

In case of a JTAG-based parallel communication, the
PIL_configureParallelCom(...) call is used in lieu of specifying com-
munication callbacks.

Configuration Constants

The PIL_CONST_DEF macro is used for making settings and diagnostics infor-
mation available to PLECS. At a minimum, Guid[] must be defined. If a se-
rial link is used for communication between PLECS and the target, then it is
also necessary to specify to PLECS the communication rate by means of the
BaudRate definition. Optionally, further constants can be defined as shown be-
low.

PIL_CONST_DEF(unsigned char, Guid[], CODE_GUID);
PIL_CONST_DEF(unsigned char, CompiledDate[], COMPILE_TIME_DATE_STR);
PIL_CONST_DEF(unsigned char, CompiledBy[], USER_NAME);

PIL_CONST_DEF(uint32_t, BaudRate, BAUD_RATE);
PIL_CONST_DEF(uint16_t, StationAddress, 0);
PIL_CONST_DEF(char, FirmwareDescription[], "Demo project");

Note Depending on the build settings it might be necessary to provide specific
compiler/linker instructions (e.g. #pragma RETAIN) to prevent PIL definitions
and constants that are not referenced by the code from being removed from the
binary file.

Initialization Constants

The PIL framework also provides a mechanism to define “Initialization Con-
stants” (or “Configurations”) that can be read from the symbol file at the be-
ginning of a simulation and used to configure the PLECS circuit.

PIL_CONFIG_DEF macro is used for defining such constants. They must be of
integer or float type. Strings and arrays are not supported.

38

Initialization Constants

PIL_CONFIG_DEF(uint32_t, SysClk, SYSCLK_HZ);
PIL_CONFIG_DEF(uint32_t, PwmFrequency, PWM_HZ);
PIL_CONFIG_DEF(uint32_t, ControlFrequency, CONTROL_HZ);
PIL_CONFIG_DEF(uint16_t, ProcessorPartNumber, 28069);

To retrieve the values of the initialization constants in PLECS use the
plecs(’get’, ’path to PIL block’, ’InitConstants’) command either in a
m-file or in the model initialization commands.

initConstants = plecs('get','./PIL','InitConstants');

Processor = initConstants.ProcessorPartNumber;
SysClk = initConstants.SysClk;
Fs = initConstants.ControlFrequency;
Fpwm = initConstants.PwmFrequency;

39

2 PIL Framework

40

3

TI C2000 Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

3 TI C2000 Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

42

Enhanced Pulse Width Modulator (ePWM) Type 1

Enhanced Pulse Width Modulator (ePWM) Type 1

The PLECS peripheral library provides two blocks for the TI ePWM type 0/1
module. One block has a register-based configuration mask and a second block
features a graphical user interface. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during simulation and correspond to the
configurations which the embedded software makes during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a graphical user interface, while the dynamic values supplied at the inputs
must correspond to raw register values. The figure below shows the block and
its parameters for the register-based version.

Register based ePWM module model

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

43

3 TI C2000 Peripheral Models

Supported Submodules and Functionalities

The ePWM type 0/1 module consists of several submodules:

Submodules of the ePWM type 1 module [1]

The PLECS ePWM model accurately reflects the most relevant features of the
following submodules:

• Time-Base submodule
• Counter-Compare submodule
• Action-Qualifier submodule
• Dead-Band submodule
• Event-Trigger submodule

44

Enhanced Pulse Width Modulator (ePWM) Type 1

Time-Base (TB) Submodule

This submodule realizes a counter that can operate in three different modes
for the generation of asymmetrical and symmetrical PWM signals. The three
modes, up-count, down-count, and up-down-count, are visualized below.

Counter modes and resulting PWM frequencies [1]

In up-count mode, the counter is incremented from 0 to a counter period
TBPRD using a counter clock with period TTBCLK . When the counter reaches
the period, the subsequent count value is reset to zero and the sequence is re-
peated. When the counter is equal to zero or the period value, the submodule
produces a pulse of one counter clock period, which, together with the actual
counter direction, is sent to the subsequent Action Qualifier submodule.

The period of the timer clock can be calculated based on the system clock
(SYSCLKOUT) and the two clock dividers (CLKDIV and HSPCLKDIV) by:

TTBCLK =
CLKDIV ·HSPCLKDIV

SYSCLKOUT

45

3 TI C2000 Peripheral Models

The resulting PWM period further depends on the counting mode, the counter
period (TBPRD) and the counter clock period as depicted in the figure above.

While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the TBCTL register.

7 6 5 4 3 2 1 0

15 14 13 12 10 9 8

CTRMODEPHSENPRDLDSYNCOSELSWFSYNCHSPCLKDIV

HSPCLKDIVCLKDIVPHSDIRFREE, SOFT

TBCTL Register Configuration

The CLKDIV and HSPCLKDIV cells select the desired clock dividers and the
CTRMODE cell defines the counter mode. Only counter modes 00, 01, and 10
are supported by the PLECS ePWM model.

Initialization and Synchronization

The peripheral allows a counter and an output state initialization in the com-
ponent mask. Further, the initial counter direction can be specified which only
affects the up-down-count mode.

If PHSEN is set and a positive flank at the SYNCI terminal occurs, the
counter is reset to TBPHS. When in up-down-count mode, the counter direc-
tion after a synch event is defined by the PHSDIR field. The initialization
and synchronization features enable time-shifted pwm signals using multiple
ePWM modules.

Depending on the SYNCOSEL settings, the SYNCO terminal is set for the
following events:

• 00 - SYNCI
• 01 - CTR = zero
• 10 - CTR = CMPB
• 11 - Disabled

In case the SYNCI terminal is used for SYNCO, the component implements a
delay as given below:

• (counter time base = system clock) - two system clock cycles
• (counter time base ! = system clock) - one counter time base cycle

46

Enhanced Pulse Width Modulator (ePWM) Type 1

Example Configuration – Step 1

This example is based on the parameter mask shown at the beginning of this
chapter and will be further developed in subsequent sections. The TBCTL reg-
ister is configured to:

TBCTL = 1024 =̂ 0 0 0 0 0 1︸ ︷︷ ︸
CLKDIV

0 0︸︷︷︸
HSPCLKDIV

0 0 0 0 0 0 0 0︸︷︷︸
CTRMODE

According to this configuration, the time base submodule is operating in the
up-count mode with a counter time base period twice the system clock period.
The resulting PWM signal has the following period:

TPWM = (TBPRD + 1) · CLKDIV ·HSPCLKDIV

SYSCLKOUT
= 187.525 µs.

47

3 TI C2000 Peripheral Models

Counter-Compare (CC) Submodule

This submodule is responsible for generating the pulses CTR = CMPA and
CTR = CMPB used by the Action-Qualifier submodule. In a typical applica-
tion, the compare values change continuously during operation and therefore
need to be part of the dynamic configuration (block inputs). The PLECS im-
plementation only supports the shadow mode for the CMPx registers, i.e. the
content of a CMPx register is only transferred to the internal configuration at
reload events. The reload events are specified in the CMPCTL register.

7 6 5 4 3 2 1 0

15 10 9 8

LOADBMODESHDWAMODEReserved

SHDWAFULLReserved SHDWBFULL

LOADAMODESHDWBMODE Reserved

CMPCTL Register Configuration

For efficiency, the PLECS ePWM model only supports the following combina-
tions of counter mode and reload events:

CTRMODE LOADAMODE LOADBMODE

Up-count CTR = 0 CTR = 0

Down-count CTR = PRD CTR = PRD

Up-down-count CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

Furthermore, only coinciding configurations for LOADAMODE and LOADB-
MODE are supported.

In the example configuration, the CMPCTL register needs to be set to 0 be-
cause the counter is operating in up-count mode.

48

Enhanced Pulse Width Modulator (ePWM) Type 1

Action-Qualifier (AQ) Submodule

This submodule sets the EPWMx outputs based on the flags generated by
the Time-Base and Counter-Compare submodules. The AQCTLx registers
configure the actions to be performed at the different events. Similiar to the
CMPx registers, the AQCTLx registers are operated in shadow mode and are
reloaded at both the zero and the period event.

ePWM timing example [1]

The figure above shows an example (Case 2) where the ePWM output is set
to high at the CTR = CMPA event. As depicted, an output change always lags
the event by one counter clock period. The following shows the structure of
the AQCTL register.

7 6 5 4 3 2 1 0

15 12 11 10 9 8

ZROPRDCAUCAD

CBUCBDReserved

AQCTL Register Configuration

Actions depend on the counter direction. For example, the register cell CBD
defines what happens to the corresponding ePWMx output when the counter
equals CMPB, when the counter is counting down. The following configura-
tions exist:
• 00 - No Action
• 01 - Force ePWMx output low
• 10 - Force ePWMx output high

49

3 TI C2000 Peripheral Models

• 11 - Toggle ePWMx output

If events occur simultaneously, the ePWM module respects a priority assign-
ment based on the counter mode. The following figures show the Action-
Qualifier prioritization.

Action-Qualifier prioritization in up-down-count mode [1]

Action-Qualifier prioritization in up-count mode [1]

Action-Qualifier prioritization in down-count mode [1]

Notice how software-forced events have the highest priority in all three count
modes. Software forcing is configured by the Action-Qualifier-Continous-
Software-Force-Register (AQCSFRC), provided as an input to the PLECS block
to allow dynamic register configuration.

50

Enhanced Pulse Width Modulator (ePWM) Type 1

7 4 3 2 1 0

15 8

CSFACSFB

Reserved

Reserved

AQCSFRC Register Configuration

The figure above shows the relevant cells of the register where CSFA and
CSFB can be used to force an output. The following configurations are sup-
ported:

• 00 - Forcing Disabled
• 01 - Force a continuous low on ePWMx
• 10 - Force a continuous high on ePWMx
• 11 - Forcing Disabled

As illustrated in the previous ePWM timing example, the change of an eP-
WMx output lags the change of AQCSFRC by one counter clock period. Sim-
ilar to the previously described registers with dynamic configuration, the
AQCSFRC register is operated in shadow mode. The reload events can be de-
fined with the AQSFRC register.

7 6 5 4 3 2 1 0

15 8

ACTSFAOTSFAOTSFBRLDCSF

Reserved

ACTSFB

AQSFRC Register Configuration

The supported modes for RLDCSF are listed below.

• 00 - CTR = Zero
• 01 - CTR = PRD
• 10 - CTR = Zero or CTR = PRD

Immediate mode for loading is not supported due to implementation efficiency
reasons.

51

3 TI C2000 Peripheral Models

Example Configuration – Step 2

The following figure shows an example using the actions defined by the
AQCTL registers. Refer to [1] for a detailed explanation of the action symbols.

Desired ePWMA and ePWMB output signals [1]

To realize the above ePWM signals, the dynamic configuration must be set as
follows:

CMPA = 3500,CMPB = 2000,AQCSFRC = 0

Furthermore, the Action-Qualifier must be set as shown below:

AQCTLA = 18 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 0︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 1︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

AQCTLB = 258 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 1︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 0︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

52

Enhanced Pulse Width Modulator (ePWM) Type 1

Event-Trigger (ET) Submodule

This submodule utilizes the signals generated by the Time Base and Counter
Compare submodules to generate events (pulses) at the ePWMSOCx outputs.
Such pulses can trigger an ADC conversion or invoke the execution of a con-
trol algorithm or PIL block. For each ePWMSOC channel, the Event Trigger
module provides an internal 2-bit counter which permits a downsampling of
events. The following diagram shows the internal structure for the example of
SOCA.

Event Trigger Logic [1]

As can be seen, the counter is being incremented using one of the source sig-
nals on the right-hand side. The incrementing source signal is selected by the
SOCxSEL field. An SOC pulse is generated when the SOCxCNT reaches its
configurable period (SOCxPRD) and pulse generation is activated by the SOCx
flag. The configuration for both the SOCA and SOCB portion of the Event
Trigger is set by the registers ETSEL and ETPS, which are realized as static
parameters of the PLECS model.
The ETSEL register has the following structure.

7 4 3 2 0

15 14 12 11 10 8

INTSELINTENRESERVED

SOCASELSOCAENSOCBSELSOCBEN

ETSEL Register Configuration

The SOCxEN bits activate or deactivate the SOCx pulses. The SOCxSEL cells

53

3 TI C2000 Peripheral Models

determine the source for the event trigger counter. Note, SOCxSEL = 000 is
not supported in the model.

This figure shows the structure of the ETPS register.

7 4 3 2 1 0

15 14 13 12 11 10 9 8

INTPRDINTCNTRESERVED

SOCAPRDSOCACNTSOCBPRDSOCBCNT

ETPS Register Configuration

The SOCxCNT cells allow initialization of the event counter. The SOCxPRD
bits determine the number of events that must occur before an SOCx pulse is
generated. Refer to [1] for detailed information regarding the configuration of
the ETPS register.

Example Configuration – Step 3

A possible use case for the Event-Trigger submodule is to generate a SOCA
pulse every second time the TB-counter meets the CMPA value. To achieve
this behavior, the ET is configured as follows.

ETSEL = 0xC00 =̂ 0 0 0 0 1︸︷︷︸
SOCAEN

1 0 0︸︷︷︸
SOCASEL

0 0 0 0 0 0 0 0

This setting enables the SOCA pulses and uses the CTR = CMPA event for
incrementing the ET-counter. Note that SOCB pulses are completely disabled
in this example.

ETPS = 512 =̂ 0 0 0 0 0 0︸︷︷︸
SOCACNT

1 0︸︷︷︸
SOCAPRD

0 0 0 0 0 0 0 0

54

Enhanced Pulse Width Modulator (ePWM) Type 1

Dead-Band Submodule

The role of this submodule is to add programmable delays to rising and falling
edges of the ePWM signals and to generate signal pairs with configurable po-
larity. The figure below depicts the internal structure of the Dead-Band sub-
module.

Dead-Band Logic [1]

As shown, the PWMx signals from the Action-Qualifier submodule are post-
processed based on the DBCTL register settings. Furthermore, the delay
times are programmables by the registers DBRED and DBFED for the ris-
ing and falling edge delay, respectively. The structure of the DBCTL register
is shown in the following block diagram.

7 6 5 4 3 2 1 0

15 14 8

OUT_MODEPOLSELIN_MODEReserved

ReservedHALFCYCLE

DBCTL Register Configuration

The submodule register cells allow for the following settings:
• HALFCYCLE - Delay counters increment with half TB-counter clock period
• IN_MODE - Choose source for delay counters; can also be used for output

switching

55

3 TI C2000 Peripheral Models

• POL_SEL - Invert output polarity
• OUT_MODE - Enables Dead-Band bypassing for both outputs

Refer to [1] for detailed information regarding the configuration of the DBCTL
register.

Example Configuration – Step 4

In the sample configuration, the signal EPWMB is selected as the source for
both delay counters. Further, both the rising and falling edge of the outputs
are delayed by 10 counter clock periods and the polarities are not inverted.
The DBCTL register therefore should be configured as follows.

DBCTL = 0b110011 =̂ 0 0 0 0 0 0 0 0 0 0 1 1︸︷︷︸
IN_MODE

0 0︸︷︷︸
POL_SEL

1 1︸︷︷︸
OUT_MODE

With the HALFCYCLE bit set to zero, the DBRED and DBFED must be con-
figured to:

DBRED = 10 , DBFED = 10

56

Enhanced Pulse Width Modulator (ePWM) Type 4

Enhanced Pulse Width Modulator (ePWM) Type 4

The PLECS peripheral library provides two blocks for the TI ePWM type 4
module. One block has a register-based configuration mask and a second block
features a graphical user interface. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during simulation and correspond to the
configurations which are initialized by the embedded software at startup.
Inputs are dynamically changeable while the simulation is running. The
fixed configuration can be entered either using a register-based approach or
a graphical user interface, while the dynamic values supplied at the inputs
must correspond to raw register values. The figure below shows the block and
its parameters for the register-based version.

Register based ePWM module model

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

57

3 TI C2000 Peripheral Models

Supported Submodules and Functionalities

The ePWM type 4 module consists of several submodules:

Submodules of the ePWM type 4 module [4]

The PLECS ePWM model accurately reflects the most relevant features of the
following submodules:

• Time-Base submodule
• Counter-Compare submodule
• Action-Qualifier submodule
• Dead-Band submodule
• Event-Trigger submodule

58

Enhanced Pulse Width Modulator (ePWM) Type 4

Time-Base (TB) Submodule

This submodule realizes a counter that can operate in three different modes
for the generation of asymmetrical and symmetrical PWM signals. The three
modes, up-count, down-count, and up-down-count, are visualized below.

Counter modes and resulting PWM frequencies [4]

In up-count mode, the counter is incremented from 0 to a counter period
TBPRD using a counter clock with period TTBCLK . When the counter reaches
the period, the subsequent count value is reset to zero and the sequence is re-
peated. When the counter is equal to zero or the period value, the submodule
produces a pulse of one counter clock period, which, together with the actual
counter direction, is sent to the subsequent Action Qualifier submodule.

In the type 4 ePWM module, the system clock (SYSCLKOUT) can be divided
further to generate the EPWM clock (EPWMCLK). This is determined by the
EPWMCLKDIV bit in the PERCLKDIVSEL register and the system clock by
the following formula:

59

3 TI C2000 Peripheral Models

EPWMCLK =
SYSCLKOUT

1 + EPWMCLKDIV

The period of the timer-base module clock (TBCLK) can be calculated based
on the EPWM clock (EPWMCLK) and the two clock dividers (CLKDIV and
HSPCLKDIV) by:

TTBCLK =
CLKDIV ·HSPCLKDIV

EPWMCLK

The resulting PWM period further depends on the counting mode, the counter
period (TBPRD) and the counter clock period as depicted in the figure above.

While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the TBCTL register.

7 6 5 4 3 2 1 0

15 14 13 12 10 9 8

CTRMODEPHSENPRDLDSYNCOSELSWFSYNCHSPCLKDIV

HSPCLKDIVCLKDIVPHSDIRFREE, SOFT

TBCTL Register Configuration

The CLKDIV and HSPCLKDIV cells select the desired clock dividers and the
CTRMODE cell defines the counter mode.

Only counter modes 00, 01, and 10 are supported by the PLECS ePWM type 4
model.

Initialization and Synchronization

The peripheral allows a counter and an output state initialization in the com-
ponent mask. Further, the initial counter direction can be specified which only
affects the up-down-count mode.

If PHSEN is set and a positive flank at the SYNCI terminal occurs, the
counter is reset to TBPHS. When in up-down-count mode, the counter direc-
tion after a synch event is defined by the PHSDIR field. The initialization
and synchronization features enable time-shifted pwm signals using multiple
ePWM modules.

Depending on the SYNCOSEL settings, the SYNCO terminal is set for the
following events:

• 00 - SYNCI
• 01 - CTR = zero

60

Enhanced Pulse Width Modulator (ePWM) Type 4

• 10 - CTR = CMPB
• 11 - SYNCO is defined by TBCTL2.SYNCOSELX

In case the SYNCI terminal is used for SYNCO, the component implements a
delay as given below:

• (counter time base = system clock) - two system clock cycles
• (counter time base ! = system clock) - one counter time base cycle

The TBCTL2 register extends the SYNCO options and provides additional set-
tings for reloading the period register.

7 6 5 4 3 2 1 0

15 14 13 12 10 9 8

SELFCLRTREMOSHTSYNCMOSHTSYNC

PRDLDSYNC SYNCOSELX
11

RESERVED

RESERVED

TBCTL2 Register Configuration

The SYNCOSELX configuration only has an effect if TBCTL.SYNCOSEL is
set to 11 and defines the SYNCO event:

• 00 - Disabled
• 01 - CTR = CMPC
• 10 - CTR = CMPD
• 11 - Reserved

The PRDLDSYNC field defines the event for reloading the active period regis-
ter.

• 00 - Only at the CTR = 0 event
• 01 - At both the SYNC and the CTR = 0 event
• 10 - Only at the SYNC event
• 11 - Reserved

61

3 TI C2000 Peripheral Models

Example Configuration – Step 1

This example is based on the parameter mask shown at the beginning of this
chapter and will be further developed in subsequent sections.

The counter time base period is set equal to the system clock period by config-
uring the EPWMCLKDIV bit to zero.

The TBCTL register is configured to:

TBCTL = 1024 =̂ 0 0 0 0 0 1︸ ︷︷ ︸
CLKDIV

0 0︸︷︷︸
HSPCLKDIV

0 0 0 0 0 0 0 0︸︷︷︸
CTRMODE

According to this configuration, the time-base submodule is operating in the
up-count mode with a timer clock period twice the EPWM-clock period. The
resulting PWM signal has the following period:

TPWM = (TBPRD + 1) · CLKDIV ·HSPCLKDIV

EPWMCLK
= 187.525 µs.

62

Enhanced Pulse Width Modulator (ePWM) Type 4

Counter-Compare (CC) Submodule

This submodule is responsible for generating the pulses CTR = CMPA, CTR =
CMPB, CTR = CMPC and CTR = CMPD used by the Action-Qualifier submod-
ule. In a typical application, the compare values change continuously during
operation and therefore need to be part of the dynamic configuration (block
inputs). The PLECS implementation only supports the shadow mode for the
CMPx registers, i.e. the content of a CMPx register is only transferred to the
internal configuration at reload events.

The reload events are specified in the CMPCTL and CMPCTL2 registers.

7 6 5 4 3 2 1 0

15 10 9 8

LOADBMODESHDWAMODEReserved

SHDWAFULLSHDWBFULL

LOADAMODESHDWBMODE Reserved

11

LOADASYNCReserved
121314

LOADBSYNC

CMPCTL Register Configuration

7 6 5 4 3 2 1 0

15 10 9 8

LOADDMODESHDWCMODEReserved

SHDWCFULLSHDWDFULL

LOADCMODESHDWDMODE Reserved

11

LOADCSYNCReserved
121314

LOADDSYNC

CMPCTL Register Configuration

For efficiency, the PLECS ePWM model only supports the following combina-
tions of counter mode and reload events:

CTRMODE LOADAMODE LOADBMODE LOADCMODE LOADDMODE

Up-count CTR = 0 CTR = 0 CTR = 0 CTR = 0

Down-count CTR = PRD CTR = PRD CTR = PRD CTR = PRD

Up-down-count CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

CTR = 0
or
CTR = 0 or CTR = PRD

Furthermore, only coinciding configurations for LOADAMODE, LOADB-
MODE, LOADCMODE and LOADDMODE are supported.

In the example configuration, the CMPCTL and CMPCTL2 registers need to
be set to 0 because the counter is operating in up-count mode.

63

3 TI C2000 Peripheral Models

Action-Qualifier (AQ) Submodule

This submodule sets the EPWMx outputs based on the flags generated by the
Time-Base and Counter-Compare submodules. The AQCTLx and AQCTLx2
registers configure the actions to be performed at the different events. Simil-
iar to the CMPx registers, the AQCTLx and AQCTLx2 registers are operated
in shadow mode and are reloaded at both the zero and the period events.

ePWM timing example [4]

The figure above shows an example (Case 2) where the ePWM output is set
to high at the CTR = CMPA event. As depicted, an output change always lags
the event by one counter clock period. The following shows the structure of
the AQCTLx register.

7 6 5 4 3 2 1 0

15 12 11 10 9 8

ZROPRDCAUCAD

CBUCBDReserved

AQCTLx Register Configuration

An output change can also be made using the T1 and T2 events. The
AQCTLx2 register can be configured to change output when a T1 or T2 event
occurs and depending on the direction of the counter at that instant. It is as-
sumed that an output change always lags the event by one counter clock pe-
riod. The following figure shows the structure of the AQCTLx2 register.

Actions depend on the counter direction. For example, the register cell CBD
defines what happens to the corresponding ePWMx output when the counter

64

Enhanced Pulse Width Modulator (ePWM) Type 4

7 6 5 4 3 2 1 0

15 12 11 10 9 8

T1UT1DT2UT2D

Reserved
1314

AQCTLx2 Register Configuration

equals CMPB, and when the counter is counting down. The following configu-
rations exist:
• 00 - No Action
• 01 - Force ePWMx output low
• 10 - Force ePWMx output high
• 11 - Toggle ePWMx output
If events occur simultaneously, the ePWM module respects a priority assign-
ment based on the counter mode. The following figures show the Action-
Qualifier prioritization.

Action-Qualifier prioritization in up-down-count mode [4]

Action-Qualifier prioritization in up-count mode [4]

Notice how software-forced events have the highest priority in all three count
modes. Software forcing is configured by the Action-Qualifier-Continous-
Software-Force-Register (AQCSFRC), provided as an input to the PLECS block
to allow dynamic register configuration.

65

3 TI C2000 Peripheral Models

Action-Qualifier prioritization in down-count mode [4]

The figure below shows the relevant cells of the register where CSFA and
CSFB can be used to force an output. The following configurations are sup-
ported:

7 4 3 2 1 0

15 8

CSFACSFB

Reserved

Reserved

AQCSFRC Register Configuration

• 00 - Forcing Disabled
• 01 - Force a continuous low on ePWMx
• 10 - Force a continuous high on ePWMx
• 11 - Forcing Disabled

As illustrated in the previous ePWM timing example, the change of an
ePWMx output lags the change of AQCSFRC by one counter clock period.
Similar to the previously described registers with dynamic configuration, the
AQCSFRC register is operated in shadow mode. The reload events can be de-
fined with the AQSFRC register.

7 6 5 4 3 2 1 0

15 8

ACTSFAOTSFAOTSFBRLDCSF

Reserved

ACTSFB

AQSFRC Register Configuration

The supported modes for RLDCSF are listed below.

• 00 - CTR = Zero
• 01 - CTR = PRD
• 10 - CTR = Zero or CTR = PRD

66

Enhanced Pulse Width Modulator (ePWM) Type 4

Immediate mode for loading is not supported due to implementation efficiency
reasons.

Example Configuration – Step 2

The following figure shows an example using the actions defined by the
AQCTLx registers. Refer to [4] for a detailed explanation of the action sym-
bols.

Desired ePWMA and ePWMB output signals [4]

To realize the above ePWM signals, the dynamic configuration must be set as
follows:

CMPA = 3500;CMPB = 2000;AQCSFRC ,AQCTLA2 ,AQCTLB2 = 0

Furthermore, the Action-Qualifier must be set as shown below:

AQCTLA = 18 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 0︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 1︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

AQCTLB = 258 =̂ 0 0 0 0 0 0︸︷︷︸
CBD

0 1︸︷︷︸
CBU

0 0︸︷︷︸
CAD

0 0︸︷︷︸
CAU

0 0︸︷︷︸
PRD

1 0︸︷︷︸
ZRO

67

3 TI C2000 Peripheral Models

Event-Trigger (ET) Submodule

This submodule utilizes the signals generated by the Time Base and Counter
Compare submodules to generate events (pulses) at the ePWMSOCx outputs.
Such pulses can trigger an ADC conversion or invoke the execution of a con-
trol algorithm or PIL block. For each ePWMSOC channel, the Event Trigger
module provides an internal 4-bit counter which permits a downsampling of
events. The following diagram shows the internal structure for the example of
SOCA.

Event Trigger Logic [4]

As can be seen, the counter is being incremented using one of the source sig-
nals on the right-hand side.

The figures below show the structure of the ETPS and ETSOCPS registers.

7 4 3 2 1 0

15 14 13 12 11 10 9 8

INTPRDINTCNT

SOCAPRDSOCACNTSOCBPRDSOCBCNT

SOCPSSEL
56

INTPSSELRESERVED

ETPS Register Configuration

The SOCPSSEL bit determines whether SOCxCNT and SOCxPRD take con-
trol or whether SOCxCNT2 and SOCxPRD2, in the ETSOCPS register, take
control.

68

Enhanced Pulse Width Modulator (ePWM) Type 4

7 4 3 0

15 12 11 8

SOCACNT2 SOCAPRD2

SOCBCNT2 SOCBPRD2

ETSOCPS Register Configuration

The SOCxPRD and SOCxPRD2 bits determine the number of events that
must occur before an SOCx pulse is generated. Refer to [4] for detailed infor-
mation regarding the configuration of the ETPS and ETSOCPS registers.

The ETCNTINIT register is used to initialize the counter for the SOCA and
SOCB events at startup. The structure of the register is shown below.

7 4 3 0

15 12 11 8

SOCACNT2 SOCAPRD2

SOCBCNT2 SOCBPRD2

ETSOCPS Register Configuration

The ETSEL register has the following structure.

7 4 3 2 0

15 14 12 11 10 8

INTSELINTEN

SOCASELSOCAENSOCBSELSOCBEN

RESERVED SOCBSELCMPINTSELCMP SOCASELCMP

ETSEL Register Configuration

The SOCxEN bits activate or deactivate the SOCx pulses. The SOCxSEL cells
determine the source for the event trigger counter. The SOCxSELCMP cells
determine if CMPA and CMPB or CMPC and CMPD are used for SOCxSEL
counter.

Note, SOCxSEL = 000 is not supported in the model.

The incrementing source signal is selected by the SOCxSEL field and the
SOCPSSEL bit determines which counter to use. An SOC pulse is generated
when the SOC counter (SOCxCNT or SOCxCNT2) reaches its configurable pe-
riod (SOCxPRD or SOCxPRD2) and pulse generation is activated by the SOCx
flag. The configuration for both the SOCA and SOCB portion of the Event
Trigger is set by the registers ETSEL, ETPS, ETSOCPS, and ETCNTINIT
registers, which are realized as static parameters of the PLECS model.

69

3 TI C2000 Peripheral Models

Example Configuration – Step 3

A possible use case for the Event-Trigger submodule is to generate a SOCA
pulse every second time the TB-counter meets the CMPA value. To achieve
this behavior, the ET is configured as follows.

ETSEL = 0xC00 =̂ 0 0 0 0 1︸︷︷︸
SOCAEN

1 0 0︸︷︷︸
SOCASEL

0 0 0 0︸︷︷︸
SOCASELCMP

0 0 0 0

This setting enables the SOCA pulses and uses the CTR = CMPA event for
incrementing the ET-counter. Note that SOCB pulses are completely disabled
in this example.

ETPS = 512 =̂ 0 0 0 0 0 0 1 0︸︷︷︸
SOCAPRD

0 0 0︸︷︷︸
SOCPSSEL

0 0 0 0 0

70

Enhanced Pulse Width Modulator (ePWM) Type 4

Dead-Band Submodule

The role of this submodule is to add programmable delays to rising and falling
edges of the ePWM signals and to generate signal pairs with configurable po-
larity. The figure below depicts the internal structure of the Dead-Band sub-
module.

Dead-Band Logic [4]

As shown, the PWMx signals from the Action-Qualifier submodule are post-
processed based on the DBCTL register settings. Furthermore, the delay
times are programmable by the registers DBRED and DBFED for the rising
and falling edge delays, respectively. The structure of the DBCTL register is
shown in the following block diagram.

7 6 5 4 3 2 1 0

15 14 8

OUT_MODEPOLSELIN_MODELOADREDMODE

HALFCYCLE DEDB_MODE OUTSWAP
13 12 11 10 9

LOADFEDMODESHDWDBFED
MODE

SHDWDBRED
MODE

DBCTL Register Configuration

The submodule register cells allow for the following settings:

71

3 TI C2000 Peripheral Models

• HALFCYCLE - Delay counters increment with half TB-counter clock period
• DEDB_MODE - Apply falling and rising edge delays to input signal
• OUTSWAP - Swap output one or both signals
• LOADFEDMODE - Determine when to load DBFED register from shadow

to active register
• LOADREDMODE - Determine when to load DBRED register from shadow

to active register
• IN_MODE - Choose source for delay counters; can also be used for output

switching
• POL_SEL - Invert output polarity
• OUT_MODE - Enables Dead-Band bypassing for both outputs

DBFED and DBRED are loaded to the active register from the shadow reg-
ister on the events selected by LOADFEDMODE and LOADREDMODE bits,
respectively. Only shadow mode operation is supported in the PLECS type 4
ePWM module.

In addition to the classic operation available on the type 1 ePWM module, the
type 4 ePWM module provides additional operating modes. Refer to [4] for de-
tailed information regarding the configuration of the DBCTL register and the
additional operating modes.

Additional deadband operation modes [4]

72

Enhanced Pulse Width Modulator (ePWM) Type 4

Example Configuration – Step 4

In the sample configuration, the signal EPWMB is selected as the source for
both delay counters. Further, both the rising and falling edges of the outputs
are delayed by 10 counter clock periods and the polarities are not inverted.
The DBCTL register therefore should be configured as follows.

DBCTL = 0x0033 =̂ 0 0 0 0 0 0 0 0 0 0 1 1︸︷︷︸
IN_MODE

0 0︸︷︷︸
POL_SEL

1 1︸︷︷︸
OUT_MODE

With the HALFCYCLE, DEDB_MODE, OUTSWAP, LOADFEDMODE, and
LOADREDMODE bits set to zero, the DBRED and DBFED must be config-
ured to:

DBRED = 10 , DBFED = 10

73

3 TI C2000 Peripheral Models

Analog Digital Converter (ADC) Type 2

The PLECS peripheral library provides two blocks for the TI ADC type 2 mod-
ule, one with a register based configuration mask and a second with a graph-
ical user interface. The figure below shows the register-based version of the
PLECS type 2 ADC module.

Register-based ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups:

• ePWM_SOCx - input ports to trigger ADC conversions
• MAX_CONVx - input ports for number of conversions for sequencers
• RST_SEQx - input ports to reset sequencers
• ADCINA/B - input ports for measurements
• ADCRESULTx - output ports to access conversion results
• ADC INT_SEQx - output ports for ADC interrupt triggered at end of se-

quence of conversions

74

Analog Digital Converter (ADC) Type 2

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 2 ADC module in dual sequencer mode[2]

The ADC model implements the following features:

• ADC Converter with Result Registers

75

3 TI C2000 Peripheral Models

• ADC Sampling Mode
• ADC Sequencer Mode
• ADC Trigger and Interrupt Logic

A section summarizing the differences of the PLECS type 2 ADC module as
compared to the actual type 2 ADC module is provided in the “Summary” (on
page 81) section.

ADC Converter with Result Registers

The type 2 ADC module contains a single 12-bit converter with dual sample-
and-hold (S/H) circuits. The ADC can be configured to perform a series of con-
versions of preselected input channels each time a start-of-conversion (SOC)
request is received. Once a conversion has completed, the result is stored in
one of the 16 result registers, ADCRESULT0 - ADCRESULT15, as 12 bit un-
signed integers. The content of the result registers is available at the output
ports of the model.

Note The Output Mode parameter allows the ADC results to be formatted as
unsigned integers or quantized doubles.

ADC Core Clock and Sample-and-Hold Clock [2]

The period of the ADC clock, ADCCLK, and therefore the time base for the
module, is determined based on the peripheral clock, HSPCLK, and is scaled
down by the ADCCLKPS[3:0] bits of the ADCTRL3 register. An extra clock
pre-scaler is provided with the CPS bit of the ADCTRL1 register.

The width of the sampling window in the ADC type 2 is controlled by the
ACQ_PS[3:0] bits in the ADCTRL1 register. The ADC sampling time can be

76

Analog Digital Converter (ADC) Type 2

configured to be 1 - 8 cycles of the ADCCLK period. The figure above summa-
rizes the scaling of the ADC Core Clock and the S/H clock.

ADC Sampling Mode

The ADC type 2 module can be configured to operate in sequential or simulta-
neous sampling mode. In the sequential sampling mode the two S/H circuits
are operated independently. Any of the 16 input channels can be selected to be
sampled by either of the two S/H circuits by configuring the appropriate reg-
ister bit field CONVnn in the ADCCHSELSEQ1 - ADCCHSELSEQ4 registers.
The table below summarizes the input channel configuration using the CON-
Vnn bit field in sequential sampling mode.

CONVnn ADC Input Channel Selected

0000 ADCINA0

0001 ADCINA1

... ...

0111 ADCINA7

1000 ADCINB0

... ...

1111 ADCINB7

In simultaneous sampling mode, the S/H-A circuit can be configured to sam-
ple inputs ADCINA00 - ADCINA07 using the registers bit fields CONV00 -
CONV07. In this sampling mode, the MSB of CONVnn is ignored. The S/H-
B circuit will automatically sample the ADCINBnn input corresponding to the
ADCINAnn input that is chosen. For example, if the CONVnn register con-
tains the value 0110b, ADCINA6 is sampled by S/H-A and ADCINB6 is sam-
pled by S/H-B. If the value is 1001b, ADCINA1 is sampled by S/H-A and AD-
CINB1 is sampled by S/H-B.

The voltage in S/H-A is converted first, followed by the S/H-B voltage. The
result of the S/H-A conversion is placed in the current ADCRESULTn regis-
ter (e.g. ADCRESULT0). The result of the S/H-B conversion is placed in the
next ADCRESULTn register (e.g. ADCRESULT1). The next conversion will be
placed in the subsequent register (ADCRESULT2). The table above summa-
rizes the input channel configuration given by CONVnn.

77

3 TI C2000 Peripheral Models

CONVnn Input pair

0000 ADCINA0 / ADCINB0

0001 ADCINA1 / ADCINB0

... ...

0111 ADCINA7 / ADCINB7

1000 ADCINA0 / ADCINB0

... ...

1111 ADCINA7 / ADCINB7

ADC Sequencer Mode

The ADC module consists of two 8-state sequencers (SEQ1 and SEQ2) that
can be operated independently in dual-sequencing mode or can be combined to
form one 16-state sequencer (SEQ1) in cascaded-sequencing mode. In dual-
sequencing mode the maximum number of conversions for SEQ1 is set by
MAX_CONV1[2:0] and SEQ2 by MAX_CONV2[2:0] bits in the ADCMAX-
CONV register. Cascaded-sequencing mode can be viewed as SEQ1 with 16
states instead of 8 where the maximum number of conversions is governed by
MAX_CONV1[3:0] in the ADCMAXCONV register.

Note In the PLECS ADC type 2 module, MAX_CONV1 and MAX_CONV2 are
inputs that are sampled at SOC trigger events. Both inputs are sampled at trig-
ger events ePWM_SOCA and ePWM_SOCB.

In the type 2 ADC, SOC requests received during an active sequence remain
pending. Pending SOC requests are fulfilled as soon as the sequencer is initi-
ated or immediately after an active sequence of conversions is finished. Addi-
tionally, in dual-sequencing mode, an SEQ1 conversion request is given higher
priority over an SEQ2 conversion request. For example, assume that the con-
verter is busy handling SEQ1 when an SOC request from SEQ2 occurs. The
converter will start SEQ2 immediately after completing the active sequence
of conversions. If another SOC conversion request from SEQ2 occurs before
the active sequence of conversion is finished, this additional SOC request for

78

Analog Digital Converter (ADC) Type 2

SEQ2 is lost. However, if an SOC request for SEQ1 is received before the ac-
tive sequence of conversion is finished, then both SOC requests from SEQ1
and SEQ2 will remain pending. When the current SEQ1 completes its active
sequence, the SOC request for SEQ1 will be taken up immediately. The SOC
request for SEQ2 will remain pending.
The CONVnn bit field in the ADCCHSELSEQ1 - ADCCHSELSEQ4 registers
and the sampling mode, define the input pin to be sampled and converted for
the result register ADCRESULTnn. For further details of the two different
sampling modes and the conversion channel configuration, see section “ADC
Sampling Mode” (on page 77). The table below summarizes the sequencer dif-
ferences in the two sequencer modes. Details of the SOC trigger configuration
and the ADC interrupt configuration is discussed in section “ADC Interrupt
Logic” (on page 80).

Feature Single 8-state
sequencer 1

Single 8-state
sequencer 2

Cascaded 16-
state sequencer

SOC triggers ePWM SOCA ePWM SOCB ePWM SOCA,
ePWM SOCB

Maximum number of
auto conversions

8 8 16

Autostop at end-of-
sequence

Yes Yes Yes

Arbitration Priority High Low Not applicable

ADCCHSELSEQn
bit field assignment

CONV00 to
CONV07

CONV08 to
CONV15

CONV00 to
CONV15

In the PLECS ADC type 2 module, sequencer reset can be provided exter-
nally by the user. The inputs RST_SEQ1 and RST_SEQ2 are used to imme-
diately reset the sequencers, SEQ1 and SEQ2, respectively. At a reset event,
the ADC module will fulfill the request of any pending SOC request. If no
SOC requests are pending the ADC module remains in idle mode until the
next SOC trigger is received. For example, assume that the converter is busy
handling SEQ1 with pending triggers for SEQ1 and SEQ2. If a sequencer 1
reset is received during the conversion, the active conversion is immediately
stopped. After the reset, the converter is reinitialized by resetting the state
pointer to CONV00 and the conversion result pointer to ADCRESULT0. Once
the reinitialization process is completed, the pending SEQ1 trigger is cleared
and the pending SEQ1 conversion is started. However, if a sequencer 2 reset

79

3 TI C2000 Peripheral Models

is received during the conversion, the SEQ1 conversion is not stopped immedi-
ately. The sequencer 2 reset would ensure that the SEQ2 state pointer is reset
to CONV08 and the conversion result pointer to ADCRESULT8 when the next
SEQ2 conversion occurs.

Additionally, the PLECS ADC type 2 module can be configured to reset the
sequencers internally at every or every other end-of-sequence. In this mode,
the inputs RST_SEQ1 and RST_SEQ2 are ignored. The sequencer cannot be
halted in mid sequence and must wait until an end-of-sequence (EOS) event
for the next series of conversions to start. An internal reset event at every
end-of-sequence would cause the state pointer to reset to CONV00 and the
conversion result pointer to ADCRESULT0 for SEQ1 after one series of con-
versions. An internal reset event at every other end-of-sequence would cause
the state pointer to reset to CONV00 and the conversion result pointer to AD-
CRESULT0 for SEQ1 after two series of conversions. After the first series of
conversion is completed the state pointer and conversion result pointer are
stored. The next set of conversions for SEQ1 will be started from the stored
state pointer and conversion result pointer. For example, if the module is con-
figured in simultaneous sampling mode with maximum number of conversions
for SEQ1 set to two conversions, after the first series of conversions the state
pointer points to CONV02 and the conversion result pointer to ADCRESULT4.
The next conversion of SEQ1 will convert the channel selected in CONV02
and write the result into ADCRESULT4. At the end of the second series of
conversions the state pointer is reset to CONV00 and the conversion result is
reset to ADCRESULT0.

ADC Trigger and Interrupt Logic

The ADC control register, ADCTRL2, can be used to configure the SOC trig-
ger pulses to start a sequence of conversions. In dual-sequencing mode, the
ePWM_SOCB_SEQ2 bit is used to control the start of sequencing of SEQ2 by
an ePWM_SOCB trigger.

• 0 - SEQ2 cannot be started by ePWM_SOCB trigger
• 1 - SEQ2 can be started by ePWM_SOCB trigger

The ePWM_SOCA_SEQ1 bit is used to control the start of sequencing of SEQ1
by an ePWM_SOCA signal for both dual-sequencing and cascaded-sequencing
modes.

• 0 - SEQ1 cannot be started by ePWM_SOCA trigger
• 1 - SEQ1 can be started by ePWM_SOCA trigger

80

Analog Digital Converter (ADC) Type 2

Additionally, in cascaded-sequencing mode the ePWM_SOCB_SEQ1 bit is used
to control the start of sequencing of SEQ1 by an ePWM_SOCB signal (SEQ2
is unused in cascaded-sequencing mode).

• 0 - SEQ1 cannot be started by ePWM_SOCB trigger
• 1 - SEQ1 can be started by ePWM_SOCB trigger

After every sequence of conversions, the ADC generates an EOS pulse with
the duration of one ADC clock period. The ADCTRL2 register can be used to
configure the interrupts generated at the end of sequence of SEQ1 and SEQ2.
The INT_ENA_SEQ1 and INT_ENA_SEQ2 bits are used to control the gener-
ation of an ADC interrupt signal for SEQ1 and SEQ2, respectively. With the
register below, the interrupt behavior can be configured.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

SOCB
SEQ2

8

INT_MOD
SEQ2

INT_ENA
SEQ2

RST
SEQ2

SOCA
SEQ1

INT_MOD
SEQ1

INT_ENA
SEQ1

SOC
SEQ1

SOCB
SEQ

RST
SEQ1

Reserved Reserved Reserved ReservedSOC
SEQ2

EXT_SOC
SEQ1

ADC Control Register for ADC trigger and interrupt configuration [2]

The INT_ENA_SEQx bit enables the interrupt generation for SEQx.

• 0 - ADC INT_SEQx disabled
• 1 - ADC INT_SEQx enabled

The INT_MOD_SEQx bit configures the generation of an interrupt signal for
SEQx at every EOS or every other EOS.

• 0 - ADC interrupt generated for every EOS of SEQx
• 1 - ADC interrupt generated for every other EOS of SEQx

Summary of PLECS Implementation

The PLECS type 2 ADC module models the major functionality of the actual
TI type 2 ADC module. Below is a summary of differences of the PLECS type
2 ADC module as compared to the actual type 2 ADC module:

• The high and low reference voltages are provided as user inputs on the
block mask. The reference voltages must be non-negative and the high ref-
erence voltage must be greater than the low reference voltage.

• Both MAX_CONV1 and MAX_CONV2 inputs are sampled at trigger events
ePWM_SOCA and ePWM_SOCB.

• Continuous run mode is not supported.
• Sequencer override is not supported.

81

3 TI C2000 Peripheral Models

• Internal sequencer reset at every end-of-sequence or every other end-of-
sequence has been modeled for ease of use. See section “ADC Sequencer
Mode” (on page 78) for more details.

• The output results are provided either as unsigned integers (right justified)
or as quantized double values.

82

Analog Digital Converter (ADC) Type 3

Analog Digital Converter (ADC) Type 3

The PLECS peripheral library provides two blocks for the TI ADC type 3 mod-
ule, one with a register based configuration mask and a second with a graphi-
cal user interface. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• ePWMx_SOCy - input ports to trigger ADC conversions
• ADCINA/B - input ports for measurements
• ADCRESULTx - output ports to access conversion results
• ADCINTx - output ports for subsequent logic triggered by a conversion end

83

3 TI C2000 Peripheral Models

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 3 ADC module [1]

The ADC model implements these logical submodules:

• ADC Converter with Result Registers
• ADC Reference Voltage Generator
• ADC Sample Generation Logic
• ADC Input Circuit
• ADC Interrupt Logic

84

Analog Digital Converter (ADC) Type 3

ADC Converter with Result Registers

The type 3 ADC module contains a single 12-bit converter. Either an internal
or an external voltage reference can be selected.
The converter takes 13 ADC clocks for a single conversion. The period of the
ADC clock, and therefore the time base for the module, is determined based
on the system clock and the two clock dividers specified in the ADCCTL2 reg-
ister.

CLKDIV2ENADCNONOVERLAP
15 3 2 0

CLKDIV4EN
1

Reserved

ADCCTL2 Register structure

By using the bits CLKDIV4EN and CLKDIV2EN the ADC time base can be
specified as follows.

CLKDIV2EN CLKDIV4EN ADC clock

0 0 SYSCLK

0 1 SYSCLK

1 0 SYSCLK / 2

1 1 SYSCLK / 4

The bit ADCNONOVERLAP determines if an overlap of sampling and conver-
sion is allowed in case of multiple pending conversion requests.
• 0 - Overlap is allowed
• 1 - Overlap is not allowed
Once a conversion has completed, the result is stored to one of the 16 result
registers ADCRESULT0 - ADCRESULT15. These are directly associated with
the SOC. The content of the result registers is available at the output ports of
the model. The representation of the conversion result can be chosen with the
mask parameter Output Mode.

ADC Reference Voltage Generator

The ADC can use an internal or an external reference voltage. The internal
bandgap range is [0V...3.3V], while the external reference can be specified in
the component mask.

85

3 TI C2000 Peripheral Models

7 6 5 4 3 2 1 0

15 14 13 12

TEMPCONVVREFLO CONVADCREFSELReservedADCBGPWD ADCREFPWDADCPWN

ADCBSYCHNADCBSYADCENABLERESET
0

ADCCTL1 Register structure

With the bit ADCREFSEL, the desired voltage reference can be chosen.
• 0 - Internal bandgap
• 1 - Reference voltages defined by module mask
The component only supports the late interrupt pulse mode. Therefore the bit
INTPULSEPOS should be one.

ADC Sample Generation Logic

The ADC Sample Generation Logic responds to the SOCx signals, which are
based on 16 individual sets of configuration parameters SOC0 - SOC15. Every
SOC contains the following information:
• Size of Sampling Window (ACQPS)
• Converted Input Channel (CHSEL)
• Trigger Signal (TRIGSEL)
The register used for configuring a SOC is shown below.

ACQPSCHSELReservedTRIGSEL
15 11 10 9 6 5 0

ADCSOCxCTL Register structure

The register cell ACQPS defines the length of the sampling window. The min-
imum value valid is 06h which sets the Sample Window to 6+1 ADC clock cy-
cles. Note according to the hardware documentation, there are a number of
invalid settings for this register field:

10h , 11h , 12h , 13h , 14h , 1Dh , 1Eh , 1Fh , 20h , 21h , 2Ah , 2Bh , 2Ch

2Dh , 2Eh , 37h , 38h , 39h , 3Ah , 3Bh

The time needed for a full conversion can be calculated with the following
equation.

Tconv = (ACQPS + 1) ·ADCclk︸ ︷︷ ︸
SamplingWindow

+ 13 ·ADC clk︸ ︷︷ ︸
Conversion

86

Analog Digital Converter (ADC) Type 3

The CHSEL field associates an input pin with a specific SOC. The component
allows single and simultaneous sampling – see section “ADC Input Circuit”
(on page 89). For a SOC in single sample mode, cell configuration is as follows.

CHSEL Input

0h ADCINA0

1h ADCINA1

... ...

7h ADCINA7

8h ADCINB0

... ...

Fh ADCINB7

In case of simultaneous sample mode, the channel selection is configured as
pairs.

CHSEL Input pair

0h ADCINA0 / ADCINB0

1h ADCINA1 / ADCINB0

... ...

7h ADCINA7 / ADCINB7

> 7h Invalid Selection

With the TRIGSEL field it is possible to choose a particular trigger source
available as a block input. The PLECS component only supports eP-
WMx_SOCy trigger signals. The following table shows the mapping to the hex-
adecimal representation. Configurations above 14h and below 05h are invalid
and result in an error.

Additionally, it is possible to configure the interrupt signals INT1 and INT2 to
trigger ADC conversions. See section “ADC Interrupt Logic” (on page 90) for
further details.

During operation of an ADC, more than one conversion trigger can occur si-
multaneously. A SOC can also be triggered while a conversion is already ac-

87

3 TI C2000 Peripheral Models

TRIGSEL Input / Source

05h ePWM1_SOCA

06h ePWM1_SOCB

07h ePWM2_SOCA

... ...

14h ePWM8_SOCB

tive. A round robin method prioritizes pending SOCs. This scheme is accu-
rately reflected by the PLECS component. The figure below shows an example
snapshot of the round robin wheel.

ADC Prioritization example [1]

This wheel consist of 16 SOC flags and a round robin pointer (RRPOINTER).
A SOC flag is set when a trigger is received and is cleared when the corre-
sponding conversion finishes. The round robin pointer always points to the
last converted SOC and is changed with the end of every conversion. In the
PLECS ADC model, the round robin pointer initially points to SOC15. In the
example above, the round robin pointer points to SOC7 indicating this is the
last converted SOC. At this point in time, the SOC2 and SOC12 are triggered
and the corresponding flags are set. For prioritization, the ADC starts with
RRPOINTER+1 and goes clockwise through the round robin wheel, meaning
SOC12 is executed next in this example.

88

Analog Digital Converter (ADC) Type 3

The hardware ADC also provides higher prioritized SOCs and a ONESHOT
single conversion mode. These are not supported by the PLECS model.

ADC Input Circuit

The Input Circuit of the type 3 ADC module consists of two separate Sam-
ple&Hold circuits (S&H), each connected to a multiplexer. The field CHSEL
from the ADCSOCxCTL register associates an input with a particular SOC.
Measurements of TEMP SENSOR and VREFLO are not supported by the
PLECS model. The figure below shows the hardware circuit schematic of an
ADCIN voltage connected to an S&H circuit.

ADCInx Input Model [1]

After an SOC is triggered from the round robin wheel, the switch is closed
for the sampling window changing the voltage of the sampling Capacitor Ch .
Once the sampling time has elapsed, the switch is opened and the conversion
starts. For simulation efficiency reasons, the PLECS model of the ADC ap-
proximates this behavior by taking the average of the input values at the be-
gin and end of the sampling window.

The type 3 ADC further provides single as well as simultaneous measure-
ments. For a single measurement, only one S&H circuit is active at a time.
For simultaneous measurements, both S&H circuits operate in parallel, sam-
pling two different voltages at the same time. The conversion is carried out
sequentially starting with the upper S&H voltage. The sampling mode is as-
signed pairwise, always in groups of even and odd SOCs using the register
shown below.

With the bit SIMULENx, the sampling mode can be chosen as follows.

• 0 - Single sample mode for SOCx and SOCx+1
• 1 - Simultaneous sample mode set for SOCx and SOCx+1

89

3 TI C2000 Peripheral Models

7 6 5 4 3 2 1 0

15 8

SIMULEN0SIMULEN2SIMULEN4SIMULEN6SIMULEN8SIMULEN10SIMULEN12SIMULEN14

Reserved

ADCSAMPLEMODE Register structure

In case of simultaneous mode, both SOCs can still be configured indepen-
dently by the ADCSOCxCTL registers. The behavior during conversion (sam-
ple window length and channel selection) is always determined by the trig-
gered SOC. For a more advanced understanding of the modules behavior and
configuration, please refer to [1].

ADC Interrupt Logic

For every conversion, the ADC sample generation logic generates an end of
conversion pulse (EOC) with duration one ADC clock period. This pulse is
generated one cycle before latching the conversion result. The interrupt pulse
always lags the EOC pulse by one ADC clock period and therefore is simul-
taneous to the result latch. The ADC Interrupt Logic can generate the inter-
rupts ADCINT1-ADCINT9, which are available at the output ports of the ADC
model. With the register below, the interrupt behavior can be configured.

7 6 5 4 0

15 14 13 12 8

INT1SEL

INT2SEL

INT1E

INT2EINT2CONT

INT1CONT

Reserved

Reserved

INTSELxNy Register structure for the example of INT1 and INT2

The INTxE bit enables the interrupt generation by an EOC flag.

• 0 - ADCINTx disabled
• 1 - ADCINTx enabled

The INTxSEL cell defines which EOC flag triggers the interrupt.

90

Analog Digital Converter (ADC) Type 3

INTxSEL Interrupt Trigger

00h EOC0 triggers interrupt ADCINTx

01h EOC1 triggers interrupt ADCINTx

... ...

0Fh EOC15 triggers interrupt ADCINTx

> 0Fh Invalid Selection

Note The cells INT10E and INT10SEL in INTSEL9N10 have no effect be-
cause the model only supports the interrupts ADCINT1-ADCINT9.

Additionally, the interrupts INT1 and INT2 can be configured to internally
trigger SOCs, using the the following registers:

SOC0SOC1SOC2SOC3SOC4SOC5SOC6SOC7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL1 Register structure

SOC8SOC9SOC10SOC11SOC12SOC13SOC14SOC15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL2 Register structure

The field SOCx can be configured as follows.

SOCx Interrupt Trigger

00 No ADCINT will trigger SOCx

01 ADCINT1 will trigger SOCx

10 ADCINT2 will trigger SOCx

11 Invalid Selection

The setting in this register, if not 00, overwrites the trigger setting defined in
the field TRIGSEL of the ADCSOCCTLx register.

91

3 TI C2000 Peripheral Models

Analog Digital Converter (ADC) Type 4

The PLECS peripheral library provides two blocks for the TI ADC type 4 mod-
ule, one with a register based configuration mask and a second with a graphi-
cal user interface. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

92

Analog Digital Converter (ADC) Type 4

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• ePWMx_SOCy/z - input ports to trigger ADC conversions
• ADCINx - input ports for measurements
• ADCPPBxOFFREF - input ports for PPB error calculation
• ADCRESULTx - output ports to access conversion results
• ADCINTx - output ports for subsequent logic triggered by a conversion end
• ADCPPBxRESULT - output ports to access PPB results
• ADCEVTx - output ports for PPB events
• ADCEVTSTAT - access to PPB event status register
• ADCEVTINT - output ports for PPB interrupts
• ADCPPBxSTAMP - output ports to access PPB DLYSTAMP

93

3 TI C2000 Peripheral Models

ADC Module Overview

The PLECS ADC model implements the most relevant features of the MCU
peripheral.

Overview of the type 4 ADC module [4]

The ADC model implements these logical submodules:

• AD Core with Input Circuit and Converter and Result Register
• AD Wrapper with SOC Arbitration & Control and Interrupt Block
• ADC Post-Processing Blocks

ADC Converter and Result Register

The type 4 ADC module contains a single converter with an external voltage
reference specified in the component mask. It supports 12-bit and 16-bit reso-
lution and can be operated in single-ended or differential mode depending on
the settings in the ADCCTL2 register.

94

Analog Digital Converter (ADC) Type 4

7 6 3 0

15 13 12

RESERVED

0

RESERVED RESERVED

45

RESOLUTIONSIGNALMODE PRESCALE

ADCCTL2 Register structure

The bits SIGNALMODE and RESOLUTION determine the behavior and the
resolution used by the ADC. Please note that only the following combinations
are valid:

SIGNALMODE/RESOLUTION 12-bit (0) 16-bit (1)

Single-Ended (0) x

Differential (1) x

The converter takes 29.5 (16-bit) or 10.5 (12-bit) ADC clocks for a single con-
version. The period of the ADC clock is derived from the system clock, spec-
ified in the component mask, and the PRESCALE bit specified in the ADC-
CTL2 register.

PRESCALE ADC Clock

0h ADCCLK = System Clock / 1.0

1h Invalid

2h ADCCLK = System Clock / 2.0

3h ADCCLK = System Clock / 2.5

4h ADCCLK = System Clock / 3.0

... ...

Fh ADCCLK = System Clock / 8.5

Once a conversion has completed, the result is stored to one of the 16 result
registers ADCRESULT0 - ADCRESULT15. These are directly associated with
the SOC. The content of the result registers is available at the output ports of
the model. The representation of the conversion result can be chosen with the
mask parameter Output Mode.

95

3 TI C2000 Peripheral Models

ADC SOC Arbitration & Control

The ADC Arbitration Logic is defined by SOCx configurations, which consist
of 16 individual sets of configuration parameters SOC0 - SOC15. Every SOC
contains the following information:

• Size of Sampling Window (ACQPS)
• Converted Input Channel (CHSEL)
• Trigger Signal (TRIGSEL)

The register used for configuring a SOC is shown below.

015 14 9

ACQPS

181920242531

8

RESERVED

CHSEL

RES.

RESERVED

TRIGSEL CHSEL

ADCSOCxCTL Register structure

The register cell ACQPS defines the length of the sampling window. The sam-
pling window is determined by the system clock and needs to be chosen to last
at least one ADC clock period.

The time needed for a full single ended conversion can be calculated as fol-
lows.

Tconv_single−ended = (ACQPS + 1) · SYSclk︸ ︷︷ ︸
SamplingWindow

+ 10.5 ·ADC clk︸ ︷︷ ︸
Conversion

For a differential conversion, the time needed is determined by

Tconv_differential = (ACQPS + 1) · SYSclk︸ ︷︷ ︸
SamplingWindow

+ 29.5 ·ADC clk︸ ︷︷ ︸
Conversion

96

Analog Digital Converter (ADC) Type 4

The CHSEL field associates an input (single-ended mode) or a pair of inputs
(differential mode) with a specific SOC. For more details, see section “ADC In-
put Circuit” (on page 99). In single-ended mode, the input configuration for a
SOC is as follows.

CHSEL Input

0h ADCIN0

1h ADCIN1

... ...

Fh ADCIN15

In case of differential mode, the channel selection is configured as pairs.

CHSEL Input pair

0h ADCIN0 / ADCIN1

1h ADCIN0 / ADCIN1

2h ADCIN2 / ADCIN3

3h ADCIN2 / ADCIN3

... ...

Eh ADCIN14 / ADCIN15

Fh ADCIN14 / ADCIN15

With the TRIGSEL field it is possible to choose a particular trigger source
available as a block input. The ADC model only supports ePWMx_SOCy/z
trigger signals. The following table shows the mapping to the hexadecimal
representation. Configurations above 1Ch and below 05h are invalid and result
in an error.

97

3 TI C2000 Peripheral Models

TRIGSEL Input / Source

05h ePWM1_SOCA/C

06h ePWM1_SOCB/D

07h ePWM2_SOCA/C

08h ePWM2_SOCB/D

... ...

1Bh ePWM8_SOCA/C

1Ch ePWM8_SOCB/D

Additionally, it is possible to configure the interrupt signals INT1 and INT2 to
trigger ADC conversions. See section “ADC Interrupt Logic” (on page 100) for
further details.

During operation of an ADC, more than one conversion trigger can occur si-
multaneously. A SOC can also be triggered while a conversion is already ac-
tive. A round robin method prioritizes pending SOCs. This scheme is accu-
rately reflected by the PLECS component. The figure below shows an example
snapshot of the round robin wheel.

ADC Prioritization example [4]

This wheel consist of 16 SOC flags and a round robin pointer (RRPOINTER).
A SOC flag is set when a trigger is received and is cleared when the corre-

98

Analog Digital Converter (ADC) Type 4

sponding conversion finishes. The round robin pointer always points to the
last converted SOC and is changed with the end of every conversion. In the
PLECS ADC model, the round robin pointer initially points to SOC15. In the
example above, the round robin pointer points to SOC7 indicating this is the
last converted SOC. At this point in time, the SOC2 and SOC12 are triggered
and the corresponding flags are set. For prioritization, the ADC starts with
RRPOINTER+1 and goes clockwise through the round robin wheel, meaning
SOC12 is executed next in this example.

The hardware ADC also provides higher prioritized SOCs, software triggering
and a burst mode. These are not supported by the PLECS model.

ADC Input Circuit

The Input Circuit of the type 4 ADC module consists of a single Sample&Hold
circuit (S&H) connected to a multiplexer.

In single-ended mode, a single input is connected to the S&H circuit as shown
below.

ADCInx Input Model in Single-Ended Mode [4]

In this mode, a single input voltage is converted with 12bit resolution. The
ADC operates in range [VREFLO ... VREFHI]. The reference voltage can be
specified in the component mask.

99

3 TI C2000 Peripheral Models

In differential mode, the difference between two voltages can be measured
with 16-bit resolution.

ADCInx Input Model in Differential Mode [4]

In this mode, the ADC operates in range [-VREFHI ... VREFHI].

The field CHSEL from the ADCSOCxCTL register associates an input or a
pair of inputs with a particular SOC.

After an SOC is triggered from the round robin wheel, the switch is closed
for the sampling window changing the voltage of the sampling Capacitor Ch .
Once the sampling time has elapsed, the switch is opened and the conversion
starts. For simulation efficiency reasons, the PLECS model of the ADC ap-
proximates this behavior by taking the average of the input values at the be-
gin and end of the sampling window.

The behavior during conversion (sample window length and channel selection)
is always determined by the triggered SOC. For a more advanced understand-
ing of the modules behavior and configuration, please refer to [4].

ADC Interrupt Logic

For every conversion, the SOC Arbiter logic generates an end of conversion
pulse (EOC). This pulse results in an interrupt pulse with duration of one sys-
tem clock. The component only supports the late interrupt pulse mode. There-
fore the bit INTPULSEPOS in the ADCCTL1 register needs to be set to one.

7 6 3 2 1 0

15 14 13 12

RESERVEDADCPWNDZ

ADCBSYCHNADCBSY
0

RESERVED RESERVED
11

RESERVED

ADCCTL1Register structure

100

Analog Digital Converter (ADC) Type 4

Based on this, the interrupt pulses always occur synchronous to latching the
conversion results to the output.

The ADC Interrupt Logic can generate the interrupts ADCINT1-ADCINT4,
which are available at the output ports of the ADC model. With the register
below, the interrupt behavior for INT1 and INT2 can be configured.

7 6 5 4 0

15 14 13 12 8

INT1SEL

INT2SEL

INT1E

INT2EINT2CONT

INT1CONT

RESERVED

RESERVED

11

3

RESERVED

RESERVED

ADCINTSELxNy Register structure for the example of INT1 and INT2

In the model, the Interrupt Logic can only be operated in Continuous Mode.
Therefore, the bit INTxCONT always needs to be set.

The INTxE bit enables the interrupt generation by an EOC flag.

• 0 - ADCINTx disabled
• 1 - ADCINTx enabled

The INTxSEL cell defines which EOC flag triggers the interrupt.

INTxSEL Interrupt Trigger

0h EOC0 triggers interrupt ADCINTx

1h EOC1 triggers interrupt ADCINTx

... ...

Fh EOC15 triggers interrupt ADCINTx

Additionally, the interrupts INT1 and INT2 can be configured to internally
trigger SOCs, using the the following registers:

SOC0SOC1SOC2SOC3SOC4SOC5SOC6SOC7
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL1 Register structure

SOC8SOC9SOC10SOC11SOC12SOC13SOC14SOC15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADCINTSOCSEL2 Register structure

101

3 TI C2000 Peripheral Models

SOCx Interrupt Trigger

00 No ADCINT will trigger SOCx

01 ADCINT1 will trigger SOCx

10 ADCINT2 will trigger SOCx

11 Invalid Selection

The setting in this register, if not 00, overwrites the trigger setting defined in
the field TRIGSEL of the ADCSOCCTLx register.

Post-Processing Blocks

The type 4 ADC module contains four PPB blocks to post-process the conver-
sion results. The figure below shows the block diagram of a single submodule.

Overview of the type 4 ADC PPB submodule [4]

102

Analog Digital Converter (ADC) Type 4

The PPB blocks add the following features to the ADC.

• PPB Offset Correction
• PPB Error Calculation
• PPB Limit and Zero-Crossing Detection
• PPB Sample Delay Capture

Each PPB block is associated to a single SOC. This can be configured with the
register ADCPPBxCONFIG shown below.

7 3 0

15

RESERVED

8

RESERVED

45

CONFIGTWOSCOMPEN

ADCPPBxCONFIG Register structure

The field CONFIG determines the associated SOC.

CONFIG SOC

0h SOC0

1h SOC1

... ...

Fh SOC15

Note that multiple PPB blocks can point to a single SOC. The default used is
SOC0.

The PPB block implements an offset correction for the conversion result of the
associated SOC. The result of this calculation is presented at the ADCRE-
SULTx output. The calculation further saturates at 0 at the low end and ei-
ther 4095 or 65535 at the high end, depending on the signal mode (single-
ended or differential). The offset can either be positive or negative and is de-
fined by the ADCPPBxOFFCAL register shown below.

7 0

15 8

RESERVED

OFFCAL

10 9

OFFCAL

ADCPPBxOFFCAL Register structure

103

3 TI C2000 Peripheral Models

The field OFFCAL defines the offset used.

OFFCAL OFFSET

0h -1

1h -2

... ...

1FFh -512

200h +512

... ...

3FEh +2

3FFh +1

Note If multiple PPB’s are associated to an SOC, the ADCPPBxOFFCAL reg-
ister of the PPB with the highest ID is used for the calculation.

In addition to the offset calculation, the PPB implements an error calculation
depending on the field TWOSCOMPEN in the PPBxCONFIG register and the
ADCPPBxOFFREF input.

• 0 - ADCPPBxRESULT = ADCRESULTx - ADCPPxOFFREF
• 0 - ADCPPBxRESULT = ADCPPxOFFREF - ADCRESULTx

The result of this calculation produces a sign extended integer result and is
available at the ADCPPBxRESULT output.

The PPB block further implements a Zero-Crossing- and Limit-Detection for
the PPB results. The Limits compared to the ADCPPBxRESULT registers are
specified with the trip registers shown below.

015

LIMITHI

31

RESERVED
17

HSIGN
16

ADCPPBxTRIPHI Register structure for differential mode (16-bit)

104

Analog Digital Converter (ADC) Type 4

015

LIMITLO

31

RESERVED
17

LSIGN
16

ADCPPBxTRIPLO Register structure for differential mode (16-bit)

015

LIMITHI

31

RESERVED
17

HSIGN
16

1213

LIMITHI

ADCPPBxTRIPHI Register structure for single-ended mode (12-bit)

015

LIMITLO

31

RESERVED
17

LSIGN
16

1213

LIMITLO

ADCPPBxTRIPLO Register structure for single-ended mode (12-bit)

Please note that the bits used within those registers depend on the signal
mode. For the registers ADCPPBxRESULT, ADCPPBxTRIPLO and ADCPP-
BxTRIPHI, the bit usage is indicated below.

SIGNALMODE Sign bit Data bits

0 - single-ended 12 [11:0]

1 - differential 16 [15:0]

The information from the Zero-Crossing- and Limit-Detection is stored within
the ADCEVTSTAT register.

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCEVTSTAT Register structure

This register is shared by all PPB blocks and is available at the model out-
put. The status can further be used to generate ADC-Events and/or ADC-
Interrupts. The state changes resulting in events and interrupts are config-
ured using the ADCEVTSEL and ADCINTEVTSEL registers in the mask.

105

3 TI C2000 Peripheral Models

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCEVTSEL Register structure

7 6 5 4 0

15 14 13 12 8

RESERVED

RESERVED

11

3

RESERVEDPPB4TRIPHI

RESERVED
01

910

2

PPB4TRIPLOPPB4ZERO PPB3ZERO PPB3TRIPLO PPB3TRIPHI

PPB2ZERO PPB1ZEROPPB2TRIPLO PPB1TRIPLO PPB1TRIPHIPPB2TRIPHI

ADCINTEVTSEL Register structure

While every PPB hast its own ADCEVTx output, all PPBs share one interrupt
flag available at the ADCEVTINT output.

Each PPB further provides a functionality to capture the delay between a trig-
ger to the associated SOC and the effective start of the conversion. This infor-
mation is provided as multiples of the used system clock period and stored in
the ADCPPBxSTAMP register.

7 0

15 8

RESERVED

DLYSTAMP

12 11

DLYSTAMP

ADCPPBxSTAMP Register structure

Note The DLYSTAMP is calculated based on a 12-bit counter and wraps
around at 4095.

106

Enhanced Capture (eCAP) Type 0

Enhanced Capture (eCAP) Type 0

The PLECS peripheral library provides two blocks for the TI eCAP Type 0
module operated in capture mode: one with a register based configuration
mask and a second with a graphical user interface (GUI). The peripheral li-
brary also includes a block for the TI eCAP Type 0 module operated in APWM
mode. The figure below shows the GUI-based version of the PLECS Type 0
eCAP module operated in capture mode and the PLECS Type 0 eCAP module
operated in APWM mode.

PLECS eCAP modules operated in APWM and Capture modes

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

The PLECS eCAP models implement the most relevant features of the MCU
peripheral.

107

3 TI C2000 Peripheral Models

eCAP Module Operated in Capture Mode

When operated in capture mode, the eCAP module interfaces with other
PLECS components over the following terminal groups:
• ECAPx_pin - input ports to capture the pulse train
• CAPx - output ports to access capture registers 1-4
• Interrupt - output port for eCAP interrupt trigger

Overview of the type 0 eCAP module in capture mode [3]

The eCAP model operated in capture mode implements the following fea-
tures:
• Event Prescaler
• Edge Polarity Select and Capture Control

Event Prescaler

The event prescaler bits ECCTL1[13:9] can be used to reduce the frequency
of the input capture signal. When a prescale value of 1 is chosen (i.e., EC-
CTL1[13:9] = 0,0,0,0,0) the input capture signal bypasses the prescale logic

108

Enhanced Capture (eCAP) Type 0

completely. Alternatively, the prescaler can be scaled by a factor of 2 to 62 us-
ing the ECCTL1[13:9] bits. This is useful when very high frequency signals
are used as inputs.

Event prescaler control [3]

Edge Polarity Select and Capture Control

Independent edge polarities can be selected for each of the 32-bit CAP1-4 reg-
isters to capture the counter value. Loading of the capture registers can be
disabled by clearing the CAPLDEN bits in the ECCTL1 register. The bits
CAPxPOL in the ECCTL1 are used to configure the CAPx capture event on
a rising or falling edge.

The PLECS eCAP module can only be operated in continuous capture con-
trol mode. A 2-bit counter continues to run (0->1->2->3->0) and capture
values continue to be written to CAP1-4 in a circular buffer sequence. The
CTRRST1-4 bits in the ECCTL1 register can be used to force the counter to
reset after a capture event. This is useful when the eCAP module is operated
in difference mode.

The STOP_WRAP bits in the ECCTL2 register can be used to program the 2-
bit counter wrapping to occur after any of the four capture events.

Note The PLECS eCAP module does not support One-Shot capture control
mode.

109

3 TI C2000 Peripheral Models

eCAP Module Operated in APWM Mode

When operated in APWM mode, the eCAP module interfaces with other
PLECS components over the following terminal groups:

• CAP3 - input port for period shadow register
• CAP4 - input port for compare shadow register
• APWM Output - output port for the APWM gating signal
• Interrupt - output port for eCAP interrupt trigger

PWM waveform details of eCAP module operated in APWM mode [3]

The PLECS APWM mode supports shadow mode operation only. The CAP3-
4 register values are transferred to their active register on a period event.
The CAP3 input corresponds to writing to the period shadow register and the
CAP4 input corresponds to writing to the compare shadow register.

Note Immediate update operation in APWM mode is not supported.

eCAP Interrupts

In capture mode, the eCAP module can be configured to generate an interrupt
at any of the 4 capture events using the CEVTx bits in the ECEINT register.

In APWM mode, the eCAP module can be configured to generate an interrupt
at counter equals period and counter equals compare events. This can be done
by setting the CTR=PRD and CTR=CMP bits in the ECEINT register, respec-
tively.

110

Enhanced Capture (eCAP) Type 0

In both modes, a counter overflow event (FFFFFFFF->00000000) can be
configured to produce an interrupt by configuring the CTROVF bit in the
ECEINT register.

Note Flags used to generate the interrupt signal are automatically cleared in
the PLECS eCAP module after one system clock period for ease of use.

eCAP Counter Update

The PLECS eCAP module provides users access to the 32-bit counter as a
probe signal. To improve simulation efficiency the counter value is not sam-
pled every system clock period. Instead, the user defines a counter sampling
frequency to sample the counter value at the desired frequency.

Note Higher counter sampling frequency increases counter resolution but
reduces simulation speed.

Summary of PLECS Implementation

The PLECS eCAP module models the major functionality of the actual TI type
0 eCAP module. Below is a summary of the differences between the PLECS
Type 0 eCAP module and the actual Type 0 eCAP module:

• No delay between capture event and capture value becoming valid.
• One-Shot capture control mode is not supported.
• Immediate update operation in APWM mode is not supported.
• Flags used to generate the interrupt signal are automatically cleared.
• Counter sampling frequency provides user control of the counter resolution.

A higher resolution leads to slower simulation speed.

111

3 TI C2000 Peripheral Models

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

The PLECS peripheral library provides two blocks for the TI eQEP type 0
module, one with a register based configuration mask and a second with a
graphical user interface (GUI). The figure below shows the register-based ver-
sion of the PLECS type 0 eQEP module.

QPOSCNT
QEPSTS.QDF

PCSOUTQPOSCMP
QFLG.INT

QCPRD
QPOSLAT

QEPSTS.FIMF

Register-based eQEP module

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

The PLECS eQEP models implement the most relevant features of the MCU
peripheral. The eQEP module also incorporates a model of a simplified en-
coder disk in order to maintain simulation efficiency.

Both eQEP blocks interface with other PLECS components over the following
terminal groups:

• Mechanical Input - input port to connect the rotor shaft
• QPOSCMP - input port for the eQEP position-compare register
• QPOSCNT - output port for eQEP counter
• QEPSTS.QDF - output port for direction of rotation
• QEPSTS.FIMF - output port for first index marker flag
• QPOSLAT - output port for eQEP position counter latched register
• PCSOUT - output port for eQEP position-compare synchronous output

pulse stretcher
• QFLG.INT - output port for eQEP interrupt flag

Encoder

An encoder is connected to the machine rotor and generates two quadrature
signals as well as a quadrature index signal. An example of an optical encoder

112

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

Optical encoder disk with QEPI signal gated to QEPB [1]

is shown above. The number of slots of the encoder is the track of dark/light
line pairs that occur per revolution. These slots create an alternating pattern
of dark and light lines. The lines on the disk are read by two different photo-
elements that are mechanically shifted by a quarter of the pitch of the line
pair between them. As the disk rotates, the two photo-elements generate sig-
nals that are shifted 90-degrees out of phase from each other. These are usu-
ally referred to as the QEPA and QEPB signals. Additionally, a second track is
added to generate a signal that occurs once per revolution. This signal can be
used to indicate an absolute position and is known as the QEPI signal. Differ-
ent manufacturers often refer to this signal as index, marker, home position,
and zero reference [1].

The QEPA, QEPB, and QEPI signals are read as inputs by the Quadrature
Decoder Unit (QDU).

113

3 TI C2000 Peripheral Models

eQEP Module Overview

The figure below shows the major functional overview of the eQEP peripheral.
The PLECS Type 0 eQEP module provides the following functional units:

• Quadrature Decoder Unit
• Position Counter and Control Unit
• Edge Capture Unit
• Interrupt Generation

Functional Block Diagram of the eQEP Peripheral [1]

Quadrature Decoder Unit

The Type 0 eQEP Quadrature Decoder Unite (QDU) can be configured to
operate in Quadrature-count, Direction-count, UP-count, and DOWN-count

114

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

modes. However, the PLECS eQEP Type 0 module only supports operation in
Quadrature-count mode.

Note Direction-count, UP-count, and DOWN-count modes are not supported
in the PLECS eQEP Type 0 module.

Quadrature-count mode, the QEPA and QEPB signals are used to determine
the direction of rotation and the information is updated in the QDF bit in the
QEPSTS register. This bit is provided as an output of the PLECS eQEP mod-
ule. The QEPA and QEPB signals are sensed to determine when the position
counter is to be incremented/decremented. At each edge of the QEPA/B signal,
an eQEP clock pulse is generated (QCLK). The QCLK and QDF bits determine
if the counter should be incremented or decremented.

The QDU can be configured to operate such that QEPA and QEPB signals are
fed to the QA and QB inputs, respectively, for normal operation. The QDU can
also be configured such that QEPA and QEPB signals are fed to the QB and
QA inputs, respectively, to reverse the count direction. The SWAP bit in the
QDECCTL register is used to control this.

The QCLK generated by the eQEP occurs at a rate that is four times the fre-
quency of the input signals. The generation of the high frequency QCLK sig-
nal can be avoided by lumping the encoder and QDU models. A simplified
model of the encoder and QDU is incorporated into the PLECS eQEP model.
The encoder, attached to the mechanical input of the PLECS eQEP model,
converts the rotation of the mechanical port into the equivalent effect on the
eQEP counter. It does not generate the QEPA or QEPB signals internally and
thus has some inherent limitations.

Note A 2000-line encoder directly coupled to a motor running at 5000 revo-
lution per minute would result in a QEPA or QEPB frequency of 166.6 KHz (or
6 µs) [1].The phase shift between the QEPA and QEPB signals would require
the solver to take steps every 1.5 µs. This would cause the simulation speed to
be extremely slow. To mitigate this issue the encoder and QDU are lumped to-
gether in a simplified model.

It is assumed that the encoder does not have any non-idealities and the QEPA
and QEPB signals are perfectly phase-shifted by 90 degrees. Thus a Phase Er-

115

3 TI C2000 Peripheral Models

ror Flag will never be generated for the PLECS eQEP model and is not mod-
eled.

Position Counter and Control Unit

The PLECS eQEP module can be operate in the following modes:
• Position Counter Reset on Index Event
• Position Counter Reset on Maximum Position
• Position Counter Reset on the First Index Event
In all of these modes, the position counter is reset to 0 on overflow and to
QPOSMAX on underflow. Overflow occurs when the counter tries to counts up
past QPOSMAX and underflow occurs when the counter tries to counts down
past 0. Interrupt flags can be set on an overflow or underflow event.

Note The PLECS eQEP module does not support position counter reset on
unit time out event mode.

Position Counter Reset on Index Event

In the position counter reset on index event (PCROI) mode, the position
counter is reset to 0 if an index event occurs during forward motion, and to
QPOSMAX in the reverse motion. In the PLECS eQEP module, the QEPA
and QEPB signals are not generated internally and thus eQEP clock resolu-
tion is limited. It is assumed that the index event coincides with the edges of
the QEPI signal. Further, the QPOSMAX value must be chosen such that the
maximum number of counts in one complete revolution is an integer multiple
of (QPOSMAX + 1).
When used with high pole-pair machines, the counter can overflow/underflow
multiple times in between index events. This allows the PLECS eQEP module
to be configured to capture the "electrical" position of the rotor.

Note In PCROI mode, the QPOSMAX value must be chosen such that the
maximum number of increments in one complete revolution is an integer multi-
ple of (QPOSMAX + 1).

116

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

The figure below shows the operation of a 1000-line encoder with QPOSMAX
set to 3999 and operated in PCROI mode.

Position counter reset by index pulse for 1000 Line encoder (QPOSMAX =
3999) [1]

Position Counter Reset on Max Position

In Position Counter Reset on Max Position (PCROMP) mode, the position
counter counts up to QPOSMAX in forward motion and is reset to 0 on the
next eQEP clock event. In the reverse motion, the counter counts down to 0
and is reset to QPOSMAX on the next eQEP clock event. The corresponding
overflow and underflow flags are generated at these events.

The figure below shows the operation of the eQEP in PCROMP mode with
QPOSMAX set to 4.

117

3 TI C2000 Peripheral Models

Position counter underflow/overflow (QPOSMAX = 4) [1]

Note In the PLECS eQEP module, the initial counter value (QPOSINIT)
must be set between 0 and QPOSMAX, in PCROMP mode.

Position Counter Reset on First Index Event

In the Position Counter Reset on the First Index Event (PCTFIE) mode, the
counter is reset to 0 if an index event occurs in forward motion and QPOS-
MAX if it occurs in reverse motion. This only occurs on the first occurrence
and subsequently the position counter is reset based on maximum position.
For a detailed description of the operation of the PCROMP, see the section
above.

118

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

Note In the PLECS eQEP module, in both PCTFIE and PCROI modes, the
counter is reset at the immediate occurrence of a QEPI signal due to limited
resolution of the QCLK. This is because the QEPA and QEPB signals are not
generated internally.

Position Compare Unit

The eQEP can be used to generate a sync output and/or interrupt on a posi-
tion compare match event. The position compare (QPOSCMP) is operated in
shadow-mode only in the PLECS eQEP module. The shadow register value is
transferred into the active register on the following events: load on compare
match or load on position counter zero event.

A programmable position compare sync output signal is generated on a po-
sition compare match event. In the event of a new position compare match
while a previous position compare pulse is still active, the pulse stretcher gen-
erates a pulse of a specified duration from the new position compare event, as
shown in the figure below.

Note Shadow mode can not be disabled for the PLECS eQEP position com-
pare unit.

Edge Capture Unit

The eQEP module consists of an inbuilt edge capture unit that can capture
position and time information to determine the rotor speed. This enables the
calculation of rotor speed by the following equations:

v(k) ≈ x(k) − x(k − 1)

T
(3.1)

119

3 TI C2000 Peripheral Models

eQEP position compare Sync output pulse stretcher [1]

v(k) ≈ X

t(k) − t(k − 1)
(3.2)

Equation 3.1 is typically used to measure speed when the rotor is at high
speed. In this method a unit timer is configured to read the position counter
once every interval. The unit timer can be enabled or disabled by configuring
the UTE bit in the QEPCTL register. The timer counter (QUTMR) is timed
at the system clock frequency and counts up. When it counts up to the period
register (QUPRD) the counter is reset to zero and the QFLG.UTO bit is set.
The reset event also causes the position counter value to be latched into the
QPOSLAT register. Thus to determine the speed, equation 3.1 can be used as
follows:

v(k) ≈ QPOSLAT (k) −QPOSLAT (k − 1)

QUPRD + 1
× 2 × π × SY SCLKOUT

4 ×NumberOfSlots
(3.3)

In equation 3.3, QPOSLAT(k) - QPOSLAT(k-1) gives the number of counts be-

120

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

tween two unit time out event. At each QCLK event, the rotor displacement
of 2π

4×NumberOfSlots occurs in radians. Thus the total displacement of the rotor
can be determine by scaling the number of counts between two unit time out
events by the displacement in radians per count. The time interval can be de-
termined as SY SCLKOUT

QUPRD+1 , where SYSCLKOUT is the System Clock frequency
in Hz.

At low speeds, the configuration of the system may result in inaccurate esti-
mation of the speed. In a 500-line per revolution encoder with velocity calcula-
tion at a rate of 400 Hz the minimum detectable speed is 12 rpm. Below this
the edge capture unit can not accurately estimate the velocity [1].

The edge capture unit also has a timer (CAPCLK) that runs at a prescaled
rate of the SYSCLKOUT. This inner counter is clocked at CAPCLK and
counts the number of clock periods that occur between a predetermined num-
ber of QCLK counts. This allows the resolution to be increased at the slow
speeds. capture timer (QCTMR) is latched into the capture period register
(QCPRD) on every unit position event and the timer is reset. A flag is set in
the QEPSTS register to indicate that a new value has been latched into the
QCPRD register [1]. In a similar fashion the speed can be estimates as:

v(k) ≈ 2QCAPCTL.UPPS

QCPRD + 1
× 2 × π × CAPCLK

4 ×NumberOfSlots
(3.4)

In equation 3.4, QCPRD gives the counter timer value when an unit position
event occurs. The total distance travelled between the unit position is given by
2QCAPCTL.UPPS × 2π

4×NumberOfSlots in radians. The total time taken during the
unit position events is determined as CAPCLK

QCPRD+1 , where CAPCLK is the capture
unit clock frequency in Hz.

In both cases, the calculations are only accurate if the direction doesn’t change
in-between two consecutive measurements. In the event of a direction change
occurring between two unit position event, a change of direction error flag
(QEPSTS.CDEF) is set. Further, the measurements are also inaccurate if the
timer counts more than 65535 counts between two unit position events. In
this event an overflow flag (QEPSTS.COEF) is set.

121

3 TI C2000 Peripheral Models

eQEP edge capture unit [1]

Note Measurements done for low speed calculation can lead to the creation of
a high frequency signal when the rotor speed is high. Users specify a low speed
threshold beyond which the measurements done for low speed calculation are
disabled. This ensures simulation efficiency when the rotor speed is high.

eQEP Interrupt

The PLECS eQEP module can be configured to generate interrupts by config-
uring the following bits in the QEINT register:

• QDC - enables interrupt generation due to direction change.

122

Enhanced Quadrature Encoder Pulse (eQEP) Type 0

• PCU - enables interrupt generation due to position counter underflow.
• PCO - enables interrupt generation due to position counter overflow.
• PCM - enables interrupt generation due to position compare match event.
• UTO - enables interrupt generation due to unit time out event.

Note Flags used to generate the interrupt signal are automatically cleared in
the PLECS eQEP module after one system clock period for ease of use.

Summary of PLECS Implementation

The PLECS eQEP module models the major functionality of the actual TI type
0 eQEP module. Below is a summary of the differences between the PLECS
Type 0 eQEP module and the actual Type 0 eQEP module:

• Direction-count, UP-count, and DOWN-count modes are not supported in
the PLECS eQEP Type 0 module.

• The PLECS eQEP module does not support position counter reset on unit
time out event mode.

• In PCROI mode, the QPOSMAX value must be chosen such that the maxi-
mum number of increments in one complete revolution is an integer multi-
ple of (QPOSMAX + 1). (see page 116)

• In the PLECS eQEP module, the initial counter value (QPOSINIT) must be
set between 0 and QPOSMAX, in PCROMP mode. (see page 117)

• In the PLECS eQEP module, in both PCTFIE and PCROI modes, the
counter is reset at the immediate occurrence of a QEPI signal due to limited
resolution of the QCLK. This is a result of the fact that QEPA and QEPB
signals are not generated internally. (see page 118)

• Shadow mode can not be disabled for the eQEP position compare unit.
• Measurements done for low speed calculation can lead to the creation of

a high frequency signal when the rotor speed is high. Users specify a low
speed threshold beyond which the measurements done for low speed calcu-
lation are disabled. This ensures simulation efficiency when the rotor speed
is high.

• Flags used to generate the interrupt signal are automatically cleared.

123

3 TI C2000 Peripheral Models

Reference
1 - Pictures provided with Courtesy of Texas Instruments, Literature source:

TMS320x2806x Piccolo Technical Reference Manual, Literature Number
SPRUH18D, January 2011-February 2013

2 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2833x Analog-to-Digital Converter (ADC) Module Reference
Guide, Literature Number SPRU812A, September 2007 - Revised Octo-
ber 2007

3 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2833x, 2823x Enhanced Capture (eCAP) Module Reference
Guide, Literature Number: SPRUFG4A, August 2008 - Revised June
2009

4 - Pictures provided with Courtesy of Texas Instruments, Literature source:
TMS320x2837xD, 2827xD Analog-to-Digital Converter (ADC) Module Ref-
erence Guide, Literature Number: SPRUHM8C, December 2013 - Revised
December 2014

124

4

STM32 F0xx Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

4 STM32 F0xx Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

126

System Timer for PWM Generation (Output Mode)

System Timer for PWM Generation (Output Mode)

The PLECS peripheral library provides two blocks for the STM32 F0 system
timer used in output mode. One block has a register-based configuration mask
and a second block features a GUI. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during a simulation and correspond to the
configurations which the embedded software uses during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a GUI, while the dynamic values supplied at the inputs must correspond to
raw register values. The figure below shows the block and its parameters for
the register-based version.

Register-based Timer model for output mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

127

4 STM32 F0xx Peripheral Models

Timer Subtypes

The STM32 F0 MCU’s provide several subtypes of timers which can be used
for input capture, output compare and PWM generation functionalities. In the
presented model, all subtypes listed below are combined in one module and
can be chosen via the component mask:
• 4 Channel 16bit Advanced Timer
• 4 Channel 16bit General Purpose Timer
• 4 Channel 32bit General Purpose Timer
• 2 Channel 16bit GP Timer with Complementary Outputs and Deadtime
• 1 Channel 16bit GP Timer with Complementary Outputs and Deadtime
• 1 Channel 16bit General Purpose Timer
The focus of this model is the timer output behavior meaning that all input
functionalities are disregarded. This corresponds to the hardware behavior
with all TIM_CCMRx.CCyS cells being set to 00. Further, the One-Shot mode
of the module is not supported. In the following sections, the common part of
all subtypes is explained together with the models limitations. Further, the
differences between the subtypes are described in more detail.

General Counter Behavior

The base of all timer modules is an auto-reload counter driven by a prescaled
counter clock CK_CNT. The period of this time base clock is determined by
the counter clock frequency CK_PSC and the prescaler register TIM_PSC,
both configurable in the mask, as follows:

TCK_CNT =
TIM _PSC + 1

CK_PSC
The counter either operates in Edge-aligned mode with configurable direction
or in Center-aligned mode. In addition to the general counter functionality,
the module also generates output compare interrupt flags when the counter
matches the values stored in the CCRx registers. Those flags are later used to
determine the output levels of the timer module.

Edge-aligned mode

In upcounting direction, the counter counts from 0 to the counter period value
TIM_ARR and generates an update event UEV simultaneous to the counter
overflow.

128

System Timer for PWM Generation (Output Mode)

Edge-aligned mode / Upcounting [1]

In downcounting direction, the counter counts from TIM_ARR to 0 and gener-
ates an update event (UEV) simultaneous to the counter underflow.

Edge-aligned mode / Downcounting [1]

In Edge-aligned mode, the counter period and therefore the PWM period is
calculated as:

TPWM = TCK_CNT · (TIM _ARR + 1)

Center-aligned mode

In this mode, the counter alternates its direction and generates an update
event (UEV) at the counter under- and overflow.

Center-aligned mode [1]

129

4 STM32 F0xx Peripheral Models

For Center-aligned mode, the PWM period is calculated as:

TPWM = TCK_CNT · 2 · TIM _ARR

For all modes, the timer model operates in preloaded mode, meaning that the
used configuration is updated simultaneously to the update events. The Repe-
tition Counter functionality is not supported in the model.

Events used for configuration update [1]

In other words, all input terminals of the model, except the CCER register, are
sampled with the instants of the update events.

The timer mode, direction and output compare flag behavior can be set jointly
using the TIM_CR1 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CEN
8

Reserved UDISCKD ARPE CMS DIR OPM URS

Timer Mode Configuration

The CKD field only has an effect on the subtypes with PWM dead time gener-
ation and is therefore described in a later section. The register cell CMS can
be used to determine the counter mode and the output compare flag behavior.

• 00 - Edge-aligned mode
• 01 - Center-aligned mode 1 - compare flags only set when counting down
• 10 - Center-aligned mode 2 - compare flags only set when counting up
• 11 - Center-aligned mode 3 - compare flags set when counting up and down

In Edge-aligned mode, the DIR bit determines the counter direction.

• 0 - Upcounting
• 1 - Downcounting

130

System Timer for PWM Generation (Output Mode)

The module assumes the timer as always active and to be operated in
preloaded mode with the update event generation always enabled. There-
fore, the following settings are mandatory when using the register-based ver-
sion.

• TIM_CR1.ARPE = 1

• TIM_CR1.UDIS = 0

• TIM_CR1.CEN = 1

Initialization and Synchronization

The timer allows a counter initialization in the component mask. Further, the
initial counter direction can be specified which only affects the Center-Aligned
Mode. With a positive flank at the SYNC terminal, the counter is reset to zero
and the dynamic configuration is updated. The initialization and synchroniza-
tion features enable time-shifted pwm signals using multiple timer modules.

Interrupt Flags

The timer module can generate interrupt flags at the CCxIF and UIF output
terminals. Those flags are based on the counter compare and update event
flags and can be used in the model to, i.e., trigger an ADC conversion or a new
control step via the PIL block. Note that in the model those flags are imple-
mented as pulses.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UIE
8

CC1IECC2IECC1DE
CC3IE

CC4IECOMIETIEBIEUDECC2DECC3DECC4DECOMDETDERes.

Interrupt enable register

The interrupt flags can be enabled with the bits of the TIM_DIER regis-
ter.

• 0 - interrupt disabled
• 1 - interrupt enabled

Note Only the four channel subtype implementations make use of all CCxIE
fields.

131

4 STM32 F0xx Peripheral Models

Output Mode Controller

The output-mode controller generates up to 4 reference signals OCyREF based
on the output compare flags of the counter.

Output Mode Controller for OCyREF [1]

The controller implements several output modes defining the behavior of
OCyREF. With the register fields TIM_CCMRx.OCyM, the mode of each ref-
erence signal can be specified separately.

• 000 - Frozen, comparisons have no effect on OCyREF
• 001 - Active match mode, OCyREF forced high when CTR = CCRy

• 010 - Inactive match mode, OCyREF forced low when CTR = CCRy

• 011 - Toggle mode, OCyREF toggled when CTR = CCRy

• 100 - Force inactive mode, OCyREF always forced low
• 101 - Force active mode, OCyREF always forced high
• 110 - PWM Mode 1
• 111 - PWM Mode 2

Because the reference signal mode is supposed to be changed during simula-
tion, the OCyM fields can be accessed via the input terminals. Note that those
are also updated with the update events generated by the timer.

The hardware options to externally clear the reference signal are not sup-
ported in the model. Further, the break function of the timer is not part of the
model assuming the flag BDTR.MOE is always set. Therefore it is mandatory
to set MOE to 1 while using the resister-based version.

132

System Timer for PWM Generation (Output Mode)

The options available in the output stage majorly depend on the timer subtype
and therefore are discussed in the subsequent sections. The configuration of
all output stages is done with the CCER register.

Note The CCER is accessed via the input terminals and is not preloaded.
This means that a change on the CCER input directly effects the outputs.

133

4 STM32 F0xx Peripheral Models

4 Channel Advanced Timer

The Advanced Timer consists of a timer and a 4 channel output stage. The
timer has a width of 16-bit and can be operated in Edge-aligned (up and
down) as well as Center-aligned mode. For channels 1 to 3, the output stage
enables complementary outputs with dead time and configurable polarity.

Output stage of Advanced Timer (channel 1 to 3) [1]

For channel 4, the output stage shown below only supports configurable polar-
ity.

Output stage of Advanced Timer (channel 4) [1]

134

System Timer for PWM Generation (Output Mode)

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPReserved

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channels 1 to 3. The
table below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

135

4 STM32 F0xx Peripheral Models

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

This subtype implementation uses the full set of inputs, outputs and configu-
ration registers.

136

System Timer for PWM Generation (Output Mode)

4 Channel General Purpose Timer

This subtype is available with a 16-bit or 32-bit counter implementation both
supporting Edge-aligned (up and down), as well as Center-aligned modes. The
4 channel output stage shown below only supports configurable polarity.

Output stage of general purpose timer (channel 1/4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC3ECC4E CC2PCC3PCC4P CC2NPCC3NPCC4NP Res. Res. Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

137

4 STM32 F0xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR4, ARR,
SYNC, OC1M - OC4M,
CCER

x

Output OC1 - OC4, CC1IF-
CC4IF, UIF

OC1N - OC3N

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• GPIO Mode for unused outputs

138

System Timer for PWM Generation (Output Mode)

2 Channel Complementary GP Timer with Deadtime

This subtype consists of a timer and a 2 channel output stage. The timer has
a width of 16-bit and can be operated in Edge-aligned in upward direction. For
channel 1 the output stage enables complementary outputs with dead time
and configurable polarity.

Output stage of Complementary GP Timer (channel 1) [1]

For channel 2, the output stage shown below only supports configurable polar-
ity.

Output stage of Complementary GP Timer (channel 2) [1]

139

4 STM32 F0xx Peripheral Models

The CCER register can be used to configure the channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC2PCC2NPReserved Res. CC1NE

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channel 1. The table
below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

140

System Timer for PWM Generation (Output Mode)

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
SYNC, OC1M - OC2M,
CCER

CCR3 - CCR4, OC3M-
OC4M

Output OC1 - OC2, OC1N,
CC1IF - CC2IF, UIF

OC3 - OC4, OC2N -
OC3N, CC3IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

141

4 STM32 F0xx Peripheral Models

1 Channel Complementary GP Timer with Deadtime

This subtype consists of a timer and a single channel output stage. The timer
has a width of 16-bit and can be operated in Edge-aligned in upward direction.
The output stage enables complementary outputs with dead time and config-
urable polarity on channel 1.

Output stage of Complementary GP Timer (channel 1) [1]

The CCER register can be used to configure the channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved CC1NE

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channel 1. The table
below shows this for both outputs operated with equal polarity.

142

System Timer for PWM Generation (Output Mode)

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR4, OC2M-
OC4M

Output OC1, OC1N, CC1IF, UIF OC2 - OC4, OC2N -
OC3N, CC2IF - CC4IF

143

4 STM32 F0xx Peripheral Models

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

144

System Timer for PWM Generation (Output Mode)

1 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The single channel output stage shown below only supports config-
urable polarity.

Output stage of general purpose timer (channel 1/1) [1]

The CCER register can be used to configure the single channel output stage.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved Res.

Configuration of the output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CC1NP bit has no effect on the model.

145

4 STM32 F0xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR4, OC2M-
OC4M

Output OC1, CC1IF, UIF OC2 - OC4, OC1N -
OC3N, CC2IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

146

System Timer for PWM Generation (Output Mode)

GPIO Mode

In case that an output enable circuit is configured as inactive, the output level
is determined by the GPIO Mode. To mimic this in the simulation model, the
parameter GPIO Mode is available in the register-based version.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

OC1
8

OC1NOC2N OC2OC3OC3NOC4Reserved

Configuration of GPIO Mode

With the bits OCx and OCxN, the corresponding output mode can be set.

• 0 - Pull-Down (Inactive Low)
• 1 - Pull-Up (Inactive High)

Note This Register is available only in the simulation.

147

4 STM32 F0xx Peripheral Models

Analog-Digital Converter (ADC)

The PLECS peripheral library provides two blocks for the STM32 F0 ADC
module, one with a register-based configuration mask and a second with a
GUI. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• TRIG - input port to trigger adc conversions
• ADC_INx - input measurement channels
• ADC_DR - output port to access conversion results
• EOC_INT - output port for subsequent logic triggered by a conversion end
• EOSEQ_INT - output port for subsequent logic triggered by a sequence end
• ADC_Active - output port indicating an active conversion

148

Analog-Digital Converter (ADC)

ADC Module Overview

The PLECS ADC model contains the most relevant features of the MCU pe-
ripheral.

Overview of the STM F0 ADC module [1]

The ADC model implements these logical submodules:

• ADC Converter with Result Registers
• ADC Sample Logic for Single and Discontinuous mode
• ADC Interrupt Logic

For simplicity, the external trigger configuration shown in the figure above is
neglected. The trigger to the converter is directly accessed via the TRIG ter-
minal. Further, the Analog Watchdog, DMA and ADC overrun functionalities
as well as the related interrupts are not part of the model. Due to simulation
efficiency reasons, the adc can not be operated in continuous conversion mode.

149

4 STM32 F0xx Peripheral Models

While the adc is active, incoming triggers are lost. Stopping a conversion is
not supported within the model.

ADC Converter with Result Registers

The ADC module contains a converter with configurable resolution. An exter-
nal voltage reference is used which can be defined in the component mask.

The period of the ADC clock, and therefore the time base of the module, can
be determined based on PCLK with a prescaler or can be set to an asyn-
chronous clock of 14 MHz.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

CKMODE

Reserved

Reserved

ADC_CFGR2 Register structure

By using the field ADC_CFRG2.CKMODE the ADC time base can be specified
as follows:

CKMODE ADC clock

00 14 MHz

01 PCLK / 2

10 PCLK / 4

11 not supported

150

Analog-Digital Converter (ADC)

The resolution of the converter can be specified with the fields RES of the
ADC_CFGR1 register given in the next section. This also influences the
amount of ADC clock cycles needed for a conversion. With the RES bits the
resolution can be specified as shown in the table below.

RES[1] RES[0] Resolution Conversion length

0 0 12 bit 12.5 ADCCLK cycles

0 1 10 bit 11.5 ADCCLK cycles

1 0 8 bit 9.5 ADCCLK cycles

1 1 6 bit 7.5 ADCCLK cycles

For the conversion results, the hardware adc contains a single 16-bit result
register ADC_DR. The results of multiple, sequential conversions are typically
moved to the SRAM on the fly via the DMA controller. To simplify this, the
ADC_DR terminal provides the conversion result for each of the 16 possible
sequence members separately. For example, the second signal of the ADC_DR
terminal holds the conversion results of ADC_IN1.

The component further only supports the right aligned result representation
mode meaning that ADC_CFGR2.ALIGN always needs to be set to 0. In addi-
tion to this, the model provides an option to represent the conversion results
as quantized double integers, which can be chosen with the mask parameter
Output Mode.

151

4 STM32 F0xx Peripheral Models

ADC Sample Logic

The STM32F0 ADC is a sequencer type adc converting the channels specified
within a conversion sequence. The register ADC_CHSELR defines the chan-
nels part of the sequence.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

CHSEL0

171819202122232425262728293031

8

Reserved

CHSEL1CHSEL2CHSEL3CHSEL4CHSEL5CHSEL6CHSEL7CHSEL8CHSEL9CHSEL10CHSEL11CHSEL12CHSEL13CHSEL14CHSEL15

CHSEL16CHSEL17CHSEL18

ADC_CHSELR Register structure

Note that CH16-CH18 cannot be chosen because the measurements for the
temperature sensor as well as the internal reference and the battery voltage
are not part of the model.

The adc model implements the single and discontinuous conversion modes of
the adc. The continuous conversion mode is not supported due to simulation
efficiency reasons.

The ADC_CFGR1 register is applied to choose the ADC conversion mode and
control the direction.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

DMAEN

171819202122232425262728293031

8

Res. AWDCH Res. Res. AWDEN AWDSGL Reserved DISCEN

AUTOFF WAIT CONT OVRMOD EXTEN EXTSELRes. ALIGN RES DMACFGSCANDIR

ADC_CFGR1 Register structure

In single conversion mode (DISCEN = 0), the adc, once triggered, performs a
full sequence of conversions for all channels defined in the ADC_CHSELR reg-
ister.

In discontinuous conversion mode (DISCEN = 1), the adc, once triggered, only
converts a single channel of the sequence.

With the bit SCANDIR, the user can specify if the sequence starts with the
lowest channel or the highest channel specified.

Note The adc model assumes the adc not to operate in continuous conver-
sion mode and to be always active. Therefore ADC_CFGR1.CONT needs to be
cleared while using the register-based configuration.

152

Analog-Digital Converter (ADC)

SCANDIR Scan direction

0 ADC_IN0 to ADC_IN15

1 ADC_IN15 to ADC_IN0

The sample time of the adc is configurable and can be set using the
ADC_SMPR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SMPReserved

Reserved

ADC_SMPR Register structure

SMP Sampling Time

000 1.5 cycles

001 7.5 cycles

010 13.5 cycles

011 28.5 cycles

100 41.5 cycles

101 55.5 cycles

110 71.5 cycles

111 239.5 cycles

153

4 STM32 F0xx Peripheral Models

ADC Trigger and Register Write Latency

According to the STM32F0 ADC manual, the hardware module has some trig-
ger and register write latency as indicated in the picture below.

ADC trigger and register write latency

The trigger latency can be chosen to multiples of the ADC clock via a combo
box in the component mask. Due to the fact that a trigger is synched to a pos-
itive edge of the ADC clock, the delay between a trigger and the sampling
start can be the latency specified plus up to one ADC clock period. The reg-
ister write latency is entered directly and should not exceed the length of a
full sampling and conversion process.

154

Analog-Digital Converter (ADC)

ADC Interrupt Logic

The ADC module also has a connection to the NVIC of the STM F0 MCU. The
EOC flag is set after each single conversion and the EOSEQ flag at the end
of the sequence. The register ADC_IER can be used to configure the adc to
provide an interrupt pulse to the corresponding output terminals.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

Reserved

Reserved

Reserved ADRDYIEEOSMPIEEOCIEEOSEQIEOVRIEAWDIE

ADC_IER Register structure

• 0 - no interrupt pulses generated at the EOC_INT/EOSEQ_INT terminal
• 1 - interrupt pulses generated at the EOC_INT/EOSEQ_INT terminal

Even if there typically won’t be a model of the NVIC within the simulation,
those pulses can i.e. be used to trigger the PIL block modeling a control step
triggered by a finished adc conversion.

155

4 STM32 F0xx Peripheral Models

Reference
1 - Literature Source: STM32 Reference Manual [RM0091]

156

5

STM32 F1xx Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

5 STM32 F1xx Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

158

System Timer for PWM Generation (Output Mode)

System Timer for PWM Generation (Output Mode)

The PLECS peripheral library provides two blocks for the STM32 F1 system
timer used in output mode. One block has a register-based configuration mask
and a second block features a GUI. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during a simulation and correspond to the
configurations which the embedded software uses during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a GUI, while the dynamic values supplied at the inputs must correspond to
raw register values. The figure below shows the block and its parameters for
the register-based version.

Register-based Timer model for output mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

159

5 STM32 F1xx Peripheral Models

Timer Subtypes

The STM32 F1 MCU’s provide several subtypes of timers which can be used
for input capture, output compare and PWM generation functionalities. In the
presented model, all subtypes listed below are combined in one module and
can be chosen via the component mask:
• 4 Channel 16bit Advanced Timer
• 4 Channel 16bit General Purpose Timer
• 2 Channel 16bit GP Timer with Complementary Outputs and Deadtime
• 1 Channel 16bit GP Timer with Complementary Outputs and Deadtime
• 2 Channel 16bit General Purpose Timer
• 1 Channel 16bit General Purpose Timer
The focus of this model is the timer output behavior meaning that all input
functionalities are disregarded. This corresponds to the hardware behavior
with all TIM_CCMRx.CCyS cells being set to 00. Further, the One-Shot mode
of the module is not supported. In the following sections, the common part of
all subtypes is explained together with the models limitations. Further, the
differences between the subtypes are described in more detail.

General Counter Behavior

The base of all timer modules is an auto-reload counter driven by a prescaled
counter clock CK_CNT. The period of this time base clock is determined by
the counter clock frequency CK_PSC and the prescaler register TIM_PSC,
both configurable in the mask, as follows:

TCK_CNT =
TIM _PSC + 1

CK_PSC
The counter either operates in Edge-aligned mode with configurable direction
or in Center-aligned mode. In addition to the general counter functionality,
the module also generates output compare interrupt flags when the counter
matches the values stored in the CCRx registers. Those flags are later used to
determine the output levels of the timer module.

Edge-aligned mode

In upcounting direction, the counter counts from 0 to the counter period value
TIM_ARR and generates an update event UEV simultaneous to the counter
overflow.

160

System Timer for PWM Generation (Output Mode)

Edge-aligned mode / Upcounting [1]

In downcounting direction, the counter counts from TIM_ARR to 0 and gener-
ates an update event (UEV) simultaneous to the counter underflow.

Edge-aligned mode / Downcounting [1]

In Edge-aligned mode, the counter period and therefore the PWM period is
calculated as:

TPWM = TCK_CNT · (TIM _ARR + 1)

Center-aligned mode

In this mode, the counter alternates its direction and generates an update
event (UEV) at the counter under- and overflow.

Center-aligned mode [1]

161

5 STM32 F1xx Peripheral Models

For Center-aligned mode, the PWM period is calculated as:

TPWM = TCK_CNT · 2 · TIM _ARR

For all modes, the timer model operates in preloaded mode, meaning that the
used configuration is updated simultaneously to the update events. The Repe-
tition Counter functionality is not supported in the model.

Events used for configuration update [1]

In other words, all input terminals of the model, except the CCER register, are
sampled with the instants of the update events.

The timer mode, direction and output compare flag behavior can be set jointly
using the TIM_CR1 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CEN
8

Reserved UDISCKD ARPE CMS DIR OPM URS

Timer Mode Configuration

The CKD field only has an effect on the subtypes with PWM dead time gener-
ation and is therefore described in a later section. The register cell CMS can
be used to determine the counter mode and the output compare flag behavior.

• 00 - Edge-aligned mode
• 01 - Center-aligned mode 1 - compare flags only set when counting down
• 10 - Center-aligned mode 2 - compare flags only set when counting up
• 11 - Center-aligned mode 3 - compare flags set when counting up and down

In Edge-aligned mode, the DIR bit determines the counter direction.

• 0 - Upcounting
• 1 - Downcounting

162

System Timer for PWM Generation (Output Mode)

The module assumes the timer as always active and to be operated in
preloaded mode with the update event generation always enabled. There-
fore, the following settings are mandatory when using the register-based ver-
sion.

• TIM_CR1.ARPE = 1

• TIM_CR1.UDIS = 0

• TIM_CR1.CEN = 1

Initialization and Synchronization

The timer allows a counter initialization in the component mask. Further, the
initial counter direction can be specified which only affects the Center-Aligned
Mode. With a positive flank at the SYNC terminal, the counter is reset to zero
and the dynamic configuration is updated. The initialization and synchroniza-
tion features enable time-shifted pwm signals using multiple timer modules.

Interrupt Flags

The timer module can generate interrupt flags at the CCxIF and UIF output
terminals. Those flags are based on the counter compare and update event
flags and can be used in the model to, i.e., trigger an ADC conversion or a new
control step via the PIL block. Note that in the model those flags are imple-
mented as pulses.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UIE
8

CC1IECC2IECC1DE
CC3IE

CC4IECOMIETIEBIEUDECC2DECC3DECC4DECOMDETDERes.

Interrupt enable register

The interrupt flags can be enabled with the bits of the TIM_DIER regis-
ter.

• 0 - interrupt disabled
• 1 - interrupt enabled

Note Only the four channel subtype implementations make use of all CCxIE
fields.

163

5 STM32 F1xx Peripheral Models

Output Mode Controller

The output-mode controller generates up to 4 reference signals OCyREF based
on the output compare flags of the counter.

Output Mode Controller for OCyREF [1]

The controller implements several output modes defining the behavior of
OCyREF. With the register fields TIM_CCMRx.OCyM, the mode of each ref-
erence signal can be specified separately.

• 000 - Frozen, comparisons have no effect on OCyREF
• 001 - Active match mode, OCyREF forced high when CTR = CCRy

• 010 - Inactive match mode, OCyREF forced low when CTR = CCRy

• 011 - Toggle mode, OCyREF toggled when CTR = CCRy

• 100 - Force inactive mode, OCyREF always forced low
• 101 - Force active mode, OCyREF always forced high
• 110 - PWM Mode 1
• 111 - PWM Mode 2

Because the reference signal mode is supposed to be changed during simula-
tion, the OCyM fields can be accessed via the input terminals. Note that those
are also updated with the update events generated by the timer.

The hardware options to externally clear the reference signal are not sup-
ported in the model. Further, the break function of the timer is not part of the
model assuming the flag BDTR.MOE is always set. Therefore it is mandatory
to set MOE to 1 while using the resister-based version.

164

System Timer for PWM Generation (Output Mode)

The options available in the output stage majorly depend on the timer subtype
and therefore are discussed in the subsequent sections. The configuration of
all output stages is done with the CCER register.

Note The CCER is accessed via the input terminals and is not preloaded.
This means that a change on the CCER input directly effects the outputs.

165

5 STM32 F1xx Peripheral Models

4 Channel Advanced Timer

The Advanced Timer consists of a timer and a 4 channel output stage. The
timer has a width of 16-bit and can be operated in Edge-aligned (up and
down) as well as Center-aligned mode. For channels 1 to 3, the output stage
enables complementary outputs with dead time and configurable polarity.

Output stage of Advanced Timer (channel 1 to 3) [1]

For channel 4, the output stage shown below only supports configurable polar-
ity.

Output stage of Advanced Timer (channel 4) [1]

166

System Timer for PWM Generation (Output Mode)

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPReserved

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channels 1 to 3. The
table below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

167

5 STM32 F1xx Peripheral Models

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

This subtype implementation uses the full set of inputs, outputs and configu-
ration registers.

168

System Timer for PWM Generation (Output Mode)

4 Channel General Purpose Timer

This subtype is available with a 16-bit counter implementation supporting
Edge-aligned (up and down), as well as Center-aligned modes. The 4 channel
output stage shown below only supports configurable polarity.

Output stage of general purpose timer (channel 1/4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC2ECC3ECC4E CC2PCC3PCC4PReserved Reserved Reserved Reserved

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

169

5 STM32 F1xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR4, ARR,
SYNC, OC1M - OC4M,
CCER

x

Output OC1 - OC4, CC1IF-
CC4IF, UIF

OC1N - OC3N

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• GPIO Mode for unused outputs

170

System Timer for PWM Generation (Output Mode)

2 Channel Complementary GP Timer with Deadtime

This subtype consists of a timer and a 2 channel output stage. The timer has
a width of 16-bit and can be operated in Edge-aligned in upward direction. For
channel 1 the output stage enables complementary outputs with dead time
and configurable polarity.

Output stage of Complementary GP Timer (channel 1) [1]

For channel 2, the output stage shown below only supports configurable polar-
ity.

Output stage of Complementary GP Timer (channel 2) [1]

171

5 STM32 F1xx Peripheral Models

The CCER register can be used to configure the channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC2PCC2NPReserved Res. CC1NE

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channel 1. The table
below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

172

System Timer for PWM Generation (Output Mode)

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
SYNC, OC1M - OC2M,
CCER

CCR3 - CCR4, OC3M-
OC4M

Output OC1 - OC2, OC1N,
CC1IF - CC2IF, UIF

OC3 - OC4, OC2N -
OC3N, CC3IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

173

5 STM32 F1xx Peripheral Models

1 Channel Complementary GP Timer with Deadtime

This subtype consists of a timer and a single channel output stage. The timer
has a width of 16-bit and can be operated in Edge-aligned in upward direction.
The output stage enables complementary outputs with dead time and config-
urable polarity on channel 1.

Output stage of Complementary GP Timer (channel 1) [1]

The CCER register can be used to configure the channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved CC1NE

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channel 1. The table
below shows this for both outputs operated with equal polarity.

174

System Timer for PWM Generation (Output Mode)

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR4, OC2M-
OC4M

Output OC1, OC1N, CC1IF, UIF OC2 - OC4, OC2N -
OC3N, CC2IF - CC4IF

175

5 STM32 F1xx Peripheral Models

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

176

System Timer for PWM Generation (Output Mode)

2 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The 2 channel output stage shown below only supports configurable
polarity.

Output stage of general purpose timer (channel 1/2) [1]

The CCER register can be used to configure both channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC2PCC2NPReserved Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CCxNP bits have no effect on the model.

177

5 STM32 F1xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
SYNC, OC1M - OC2M,
CCER

CCR3 - CCR4, OC3M-
OC4M

Output OC1 - OC2, CC1IF -
CC2IF, UIF

OC3 - OC4, OC1N -
OC3N, CC3IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

178

System Timer for PWM Generation (Output Mode)

1 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The single channel output stage shown below only supports config-
urable polarity.

Output stage of general purpose timer (channel 1/1) [1]

The CCER register can be used to configure the single channel output stage.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved Res.

Configuration of the output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CC1NP bit has no effect on the model.

179

5 STM32 F1xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR4, OC2M-
OC4M

Output OC1, CC1IF, UIF OC2 - OC4, OC1N -
OC3N, CC2IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

180

System Timer for PWM Generation (Output Mode)

GPIO Mode

In case that an output enable circuit is configured as inactive, the output level
is determined by the GPIO Mode. To mimic this in the simulation model, the
parameter GPIO Mode is available in the register-based version.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

OC1
8

OC1NOC2N OC2OC3OC3NOC4Reserved

Configuration of GPIO Mode

With the bits OCx and OCxN, the corresponding output mode can be set.

• 0 - Pull-Down (Inactive Low)
• 1 - Pull-Up (Inactive High)

Note This Register is available only in the simulation.

181

5 STM32 F1xx Peripheral Models

Analog-Digital Converter (ADC)

The PLECS peripheral library provides two blocks for the STM32 F1 ADC
module, one with a register-based configuration mask and a second with a
GUI. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• T_REG, T_INJ - input ports to trigger ADC conversions
• ADC_INx - input measurement channels
• ADC_DR - auto-size output port to access regular conversion results
• ADC_JDR - auto-size output port to access injected conversion results
• xEOC_INT - output ports for subsequent logic triggered by a conversion end
• ADC_Active - output port indicating an active conversion

182

Analog-Digital Converter (ADC)

ADC Module Overview

The PLECS ADC model contains the most relevant features of the MCU pe-
ripheral.

Overview of the STM F1 ADC module [1]

The ADC model implements these logical submodules:

183

5 STM32 F1xx Peripheral Models

• ADC Converter with Result Registers for Injected and Regular conversion
• ADC Sample Logic for Single, Scan and Discontinuous mode
• ADC Interrupt Logic

For simplicity, the external trigger configuration shown in the figure above is
neglected. The trigger to the regular and injected channels are directly ac-
cessed via the corresponding input terminals. Further, the Analog Watchdog
functionalities as well as the Watchdog interrupt are not part of the model.
Due to simulation efficiency reasons, the ADC can not be operated in continu-
ous conversion mode.

ADC Converter with Result Registers

The ADC module contains a 12-bit converter. An external voltage reference is
used which can be defined in the component mask.

The period of the ADC clock, and therefore the time base for the module, can
also be specified in the component mask.

For the regular channels, the hardware ADC contains a single 16-bit result
register ADC_DR. The results of multiple, sequential regular group conver-
sions are typically moved to the SRAM on the fly via the DMA controller. To
simplify this, the ADC_DR terminal can provide the conversion result for each
of the 16 regular group members separately. For the injected channels, the
ADC_JDR terminal can provide access to the contents of all four ADC_JDRx
registers. In the model, both result output ports are auto-sized. This means
that their width is determined by the length of the regular or injected se-
quence.

The component only supports the right aligned result representation mode.
In addition to this, the model provides an option to represent the conversion
results as quantized double integers, which can be chosen with the mask pa-
rameter Output Mode.

ADC Sample Logic

The ADC model supports the single, scan and discontinuous conversion modes
as well as auto-injected conversions. The continuous conversion mode is not
supported due to simulation efficiency reasons. The ADC_CR1 register can be
used to choose and control the used conversion mode.

184

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

AWDCH

171819202122232425262728293031

8

EOCIEAWDIEJEOCIESCANAWDSGLJAUTODISCENJDISCENDISCNUM

ReservedJAWDENAWDENReserved

ADC_CR1 Register structure

The DISCNUM field defines the number of regular channels converted after a
trigger to the regular group was received in discontinuous mode.

DISCNUM Channels converted

000 1 channel

001 2 channels

... ...

110 7 channels

111 8 channels

The bit JDISCEN determines the discontinuous mode for injected channels:

• 0 - Discontinuous mode on injected channels disabled
• 1 - Discontinuous mode on injected channels enabled

With DISCEN, the discontinuous mode can be enabled for regular channels:

• 0 - Discontinuous mode on regular channels disabled
• 1 - Discontinuous mode on regular channels enabled

The bit JAUTO can be used to automatically trigger an injected group conver-
sion after the regular group was finished:

• 0 - Automatic injected group conversion disabled
• 1 - Automatic injected group conversion enabled

Note Be aware that JDISCEN and DISCEN exclude each other and JAUTO
can not be used with discontinuous mode or triggers to the injected group.

185

5 STM32 F1xx Peripheral Models

With the bit SCAN, the user can activate the scan mode of the component al-
lowing multiple conversions triggered by a single event.

• 0 - Scan mode disabled
• 1 - Scan mode enabled

If none of the bits JDISCEN,DISCEN and SCAN is set, the adc module op-
erates in single conversion mode. The bits JEOCIE and EOCIE are further
described in the interrupt section.

For more information about the different conversion modes please refer to [2].

The sample time of a conversion can be configured separately for every analog
input using the ADC SMPRx registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SMP10

Reserved

SMP11SMP12SMP13SMP14SMP15_0

SMP15[2:1]SMP16SMP17

ADC_SMPRx Register structure

Note that SMP16-SMP17 have no effect because the measurement options for
the temperature sensor as well as the internal reference are not part of the
model. For every other channel, the sampling time can be configured as fol-
lows:

SMPx Sampling Time

000 1.5 cycles

001 7.5 cycles

010 13.5 cycles

011 28.5 cycles

100 41.5 cycles

101 55.5 cycles

110 71.5 cycles

111 239.5 cycles

186

Analog-Digital Converter (ADC)

The ADC operates as a sequencer which has a maximum sequence of 16 con-
versions for the regular group and 4 conversions for the injected group. The
input sampled by each group element as well as the sequence length can be
configured via the ADC_SQRx and the ADC_JSQR registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SQ13

Reserved

SQ14SQ15

SQ16[4:1]

SQ16_0

L

ADC_SQRx Register structure

The length of the regular sequence is defined by the field L.

L Sequence length Converted elements / ADC_DR

0000 1 conversion [SQ1]

0001 2 conversion [SQ1 SQ2]

...

1111 16 conversions [SQ1 SQ2 ... SQ16]

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

JSQ1

Reserved

JSQ2JSQ3

JSQ4[4:1]

JSQ4_0

JL

ADC_JSQR Register structure

The length of the injected sequence is defined by the field JL.

JL Sequence length Converted elements / ADC_JDR

00 1 conversion [JSQ4]

01 2 conversion [JSQ3 JSQ4]

...

11 4 conversions [JSQ1 JSQ2 JSQ3 JSQ4]

After the last conversion is finished, the sequencer wraps around and restarts
with the first element after the next trigger was received.

187

5 STM32 F1xx Peripheral Models

For every sequence element, the sampled input can be specified via the corre-
sponding SQx or JSQx fields as follows:

SQx/JSQx Input

x0000 ADC_IN0

x0001 ADC_IN1

... ...

x1111 ADC_IN15

Note The terminals ADC_DR and ADC_JDR are auto-size output terminals.
This means that the width of the terminals is defined by J or JL as shown in
the upper tables.

ADC Interrupt Logic

The ADC module also has a connection to the NVIC of the STM F1 MCU.
The EOC flag is set when either the regular channel or the injected chan-
nel indicates an end of conversion. The JEOC flag is set when the injected
group indicates a finished conversion. The fields ADC_CR1.EOCIE and
ADC_CR1.JEOCIE can be used to configure the adc to provide an interrupt
pulse to the corresponding output terminals.

• 0 - no interrupt pulses are generated at the EOC_INT/JEOC_INT terminal
• 1 - interrupt pulses are generated at the EOC_INT/JEOC_INT terminal

Even if there typically won’t be a model of the NVIC within the simulation,
those pulses can i.e. be used to trigger the PIL block modeling a control step
triggered by a finished adc conversion.

188

Analog-Digital Converter (ADC)

Reference
1 - Literature Source: STM32 Reference Manual [RM0041]

189

5 STM32 F1xx Peripheral Models

190

6

STM32 F3xx Peripheral Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical
user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

6 STM32 F3xx Peripheral Models

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

192

System Timer for PWM Generation (Output Mode)

System Timer for PWM Generation (Output Mode)

The PLECS peripheral library provides two blocks for the STM32 F3 system
timer used in output mode. One block has a register-based configuration mask
and a second block features a GUI. In both cases, you should distinguish be-
tween registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during a simulation and correspond to the
configurations which the embedded software uses during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a GUI, while the dynamic values supplied at the inputs must correspond to
raw register values. The figure below shows the block and its parameters for
the register-based version.

Register-based Timer model for output mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

193

6 STM32 F3xx Peripheral Models

Timer Subtypes

The STM32 F3 MCU’s provide several subtypes of timers which can be used
for input capture, output compare and PWM generation functionalities. In the
presented model, all subtypes listed below are combined in one module and
can be chosen via the component mask:

• 6 Channel 16bit Advanced Timer with Complementary Outputs
• 4 Channel 32bit General Purpose Timer
• 4 Channel 16bit General Purpose Timer
• 2 Channel 16bit GP Timer with Complementary Outputs
• 1 Channel 16bit GP Timer with Complementary Outputs

The focus of this model is the timer output behavior meaning that all input
functionalities are disregarded. This corresponds to the hardware behavior
with all TIM_CCMRx.CCyS cells being set to 00. Further, the One-Shot mode
of the module is not supported. In the following sections, the common part of
all subtypes is explained together with the models limitations. Further, the
differences between the subtypes are described in more detail.

General Counter Behavior

The base of all timer modules is an auto-reload counter driven by a prescaled
counter clock CK_CNT. The period of this time base clock is determined by
the counter clock frequency CK_PSC and the prescaler register TIM_PSC,
both configurable in the mask, as follows:

TCK_CNT =
TIM _PSC + 1

CK_PSC
The counter either operates in Edge-aligned mode with configurable direction
or in Center-aligned mode. In addition to the general counter functionality,
the module also generates output compare interrupt flags when the counter
matches the values stored in the CCRx registers. Those flags are later used to
determine the output levels of the timer module.

Edge-aligned mode

In upcounting direction, the counter counts from 0 to the counter period value
TIM_ARR and generates an update event UEV simultaneous to the counter
overflow.

194

System Timer for PWM Generation (Output Mode)

Edge-aligned mode / Upcounting [1]

In downcounting direction, the counter counts from TIM_ARR to 0 and gener-
ates an update event (UEV) simultaneous to the counter underflow.

Edge-aligned mode / Downcounting [1]

In Edge-aligned mode, the counter period and therefore the PWM period is
calculated as:

TPWM = TCK_CNT · (TIM _ARR + 1)

Center-aligned mode

In this mode, the counter alternates its direction and generates an update
event (UEV) at the counter under- and overflow.

Center-aligned mode [1]

195

6 STM32 F3xx Peripheral Models

For Center-aligned mode, the PWM period is calculated as:

TPWM = TCK_CNT · 2 · TIM _ARR

For all modes, the timer model operates in preloaded mode, meaning that the
used configuration is updated simultaneously to the update events. The Repe-
tition Counter functionality is not supported in the model.

Events used for configuration update [1]

In other words, all input terminals of the model, except the CCER register, are
sampled with the instants of the update events.

The timer mode, direction and output compare flag behavior can be set jointly
using the TIM_CR1 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CEN
8

Reserved UDISCKD ARPE CMS DIR OPM URS

Timer Mode Configuration

The CKD field only has an effect on the subtypes with PWM dead time gener-
ation and is therefore described in a later section. The register cell CMS can
be used to determine the counter mode and the output compare flag behavior.

• 00 - Edge-aligned mode
• 01 - Center-aligned mode 1 - compare flags only set when counting down
• 10 - Center-aligned mode 2 - compare flags only set when counting up
• 11 - Center-aligned mode 3 - compare flags set when counting up and down

In Edge-aligned mode, the DIR bit determines the counter direction.

• 0 - Upcounting
• 1 - Downcounting

196

System Timer for PWM Generation (Output Mode)

The module assumes the timer as always active and to be operated in
preloaded mode with the update event generation always enabled. There-
fore, the following settings are mandatory when using the register-based ver-
sion.
• TIM_CR1.ARPE = 1

• TIM_CR1.UDIS = 0

• TIM_CR1.CEN = 1

Initialization and Synchronization

The timer allows a counter initialization in the component mask. Further, the
initial counter direction can be specified which only affects the Center-Aligned
Mode. With a positive flank at the SYNC terminal, the counter is reset to zero
and the dynamic configuration is updated. The initialization and synchroniza-
tion features enable time-shifted pwm signals using multiple timer modules.

Interrupt Flags

The timer module can generate interrupt flags at the CCxIF and UIF output
terminals. Those flags are based on the counter compare and update event
flags and can be used in the model to, i.e., trigger an ADC conversion or a new
control step via the PIL block. Note that in the model those flags are imple-
mented as pulses.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UIE
8

CC1IECC2IECC1DE
CC3IE

CC4IECOMIETIEBIEUDECC2DECC3DECC4DECOMDETDERes.

Interrupt enable register

The interrupt flags can be enabled with the bits of the TIM_DIER regis-
ter.
• 0 - interrupt disabled
• 1 - interrupt enabled

Note Only the four channel subtype implementations make use of all CCxIE
fields. Channel 5 & 6 have no field in TIM_DIER and therefore are assumed to
be always active.

197

6 STM32 F3xx Peripheral Models

Output Mode Controller and Output Selector

The output-mode controller generates up to 4 reference signals OCyREF based
on the output compare flags of the counter.

Output Mode Controller and Output Selector for OCyREFC [1]

The Output selector enables Asymmetric and Combined PWM Modes. With
the register fields TIM_CCMRx.OCyM, the behavior of each OCyREF/O-
CyREFC signal can be specified separately.

• 0000 - Frozen, comparisons have no effect on OCyREF
• 0001 - Active match mode, OCyREF forced high when CTR = CCRy

• 0010 - Inactive match mode, OCyREF forced low when CTR = CCRy

• 0011 - Toggle mode, OCyREF toggled when CTR = CCRy

• 0100 - Force inactive mode, OCyREF always forced low
• 0101 - Force active mode, OCyREF always forced high
• 0110 - PWM Mode 1
• 0111 - PWM Mode 2
• 1000 - Not supported
• 1001 - Not supported

198

System Timer for PWM Generation (Output Mode)

• 1010 - Not supported
• 1011 - Not supported
• 1100 - Combined PWM Mode 1
• 1101 - Combined PWM Mode 2
• 1110 - Asymmetric PWM Mode 1
• 1111 - Asymmetric PWM Mode 2

Because the signal mode is supposed to be changed during simulation, the
OCyM fields can be accessed via the input terminals. Note that those are also
updated with the update events generated by the timer.

For the 6ch Advanced Timer module there is also a Combined 3-phase PWM
mode available which is depending on OC5REF. For more details regarding
the different modes see [1].

The hardware options to externally clear the reference signal are not sup-
ported in the model. Further, the break function of the timer is not part of the
model assuming the flag BDTR.MOE is always set. Therefore it is mandatory
to set MOE to 1 while using the resister-based version.

The options available in the output stage majorly depend on the timer subtype
and therefore are discussed in the subsequent sections. The configuration of
all output stages is done with the CCER register.

Note The CCER is accessed via the input terminals and is not preloaded.
This means that a change on the CCER input directly effects the outputs.

199

6 STM32 F3xx Peripheral Models

6 Channel Advanced Timer

The Advanced Timer consists of a timer and a 6 channel output stage. The
timer has a width of 16-bit and can be operated in Edge-aligned (up and
down) as well as Center-aligned mode. Because the channels 5 and 6 are not
connected to the pins of the MCU, the outputs are not available in the periph-
eral model. However, the signals produced by stage 5 and 6 are used inter-
nally. For channels 1 to 3, the output stage enables complementary outputs
with dead time and configurable polarity.

Output stage of Advanced Timer (channel 1 to 3) [1]

The advanced timer enables a Combined 3-phase PWM Mode which is con-
trolled by the GC5Cx bits located in the CCR5 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CCR5
8

16171819202122232425262728293031

GC5C3 ReservedGC5C2 GC5C1

Channel-wise configuration of output stage

The signal OC5REF has the following effect on OCxREFC for GC5Cx.

200

System Timer for PWM Generation (Output Mode)

• 0 - No effect of OC5REF on OCxREFC
• 1 - OCxREFC is the logical and between OCxREFC and OC5REF

Note CCR5 is part of the dynamic configuration and therefore can be ac-
cessed via the input.

For channel 4, the output stage only supports configurable polarity.

Output stage of Advanced Timer (channel 4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPRes.

16171819202122232425262728293031

CC4NP

Reserved CC6P CC6E Res. Res. CC5ECC5P

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

201

6 STM32 F3xx Peripheral Models

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREFC
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channels 1 to 3. The
table below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREFC, OCxN inactive

1 0 OCx inactive, OCxN = OCxREFC

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

This subtype implementation uses the full set of inputs, outputs and configu-
ration registers.

202

System Timer for PWM Generation (Output Mode)

4 Channel General Purpose Timer

This subtype is available with a 16-bit or 32-bit counter implementation both
supporting Edge-aligned (up and down), as well as Center-aligned modes. The
4 channel output stage shown below only supports configurable polarity.

Output stage of general purpose timer (channel 1/4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPRes.

16171819202122232425262728293031

CC4NP

Reserved CC6P CC6E Res. Res. CC5ECC5P

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREFC
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

203

6 STM32 F3xx Peripheral Models

Note The CCxNP bits have no effect on the model.

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR4, ARR,
SYNC, OC1M - OC4M,
CCER

OC5M, CCR5, CCR6

Output OC1 - OC4, CC1IF -
CC4IF, UIF

OC1N - OC3N, CC5IF,
CC6IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• GPIO Mode for unused outputs

204

System Timer for PWM Generation (Output Mode)

2 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. Channel 1 of the output stage supports complementary outputs
with dead time and configurable polarity.

Output stage of general purpose timer channel 1 [1]

Channel 2 of the output stage only supports configurable polarity.

Output stage of general purpose timer channel 2 [1]

205

6 STM32 F3xx Peripheral Models

The CCER register can be used to configure both channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPRes.

16171819202122232425262728293031

CC4NP

Reserved CC6P CC6E Res. Res. CC5ECC5P

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREFC
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channel 1. The table
below shows this for both outputs operated with equal polarity.

CC1NE CC1E Behavior

0 0 OC1 & OC1N inactive

0 1 OC1 = OC1REFC, OC1N inactive

1 0 OC1 inactive, OC1N = OC1REFC

1 1 Complementary output mode with dead time

The dead time for each positive flank in OC1 and OC1N is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

206

System Timer for PWM Generation (Output Mode)

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
SYNC, OC1M - OC2M,
CCER

CCR3 - CCR6, OC3M-
OC5M

Output OC1 - OC2, OC1N,
CC1IF - CC2IF, UIF

OC3 - OC4, OC2N -
OC3N, CC3IF - CC6IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

207

6 STM32 F3xx Peripheral Models

1 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The single channel output stage supports complementary outputs
with dead time and configurable polarity.

Output stage of general purpose timer channel [1]

The CCER register can be used to configure the single channel output stage.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPRes.

16171819202122232425262728293031

CC4NP

Reserved CC6P CC6E Res. Res. CC5ECC5P

Configuration of the output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREFC

208

System Timer for PWM Generation (Output Mode)

• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior. The table below shows this
for both outputs operated with equal polarity.

CC1NE CC1E Behavior

0 0 OC1 & OC1N inactive

0 1 OC1 = OC1REFC, OC1N inactive

1 0 OC1 inactive, OC1N = OC1REFC

1 1 Complementary output mode with dead time

The dead time for each positive flank in OC1 and OC1N is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

209

6 STM32 F3xx Peripheral Models

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR6, OC2M-
OC5M

Output OC1, OC1N, CC1IF, UIF OC2 - OC4, OC2N -
OC3N, CC2IF - CC6IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

GPIO Mode

In case that an output enable circuit is configured as inactive, the output level
is determined by the GPIO Mode. To mimic this in the simulation model, the
parameter GPIO Mode is available in the register-based version.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

OC1
8

OC1NOC2N OC2OC3OC3NOC4Reserved

Configuration of GPIO Mode

With the bits OCx and OCxN, the corresponding output mode can be set.

• 0 - Pull-Down (Inactive Low)
• 1 - Pull-Up (Inactive High)

Note This Register is available only in the simulation.

210

Analog-Digital Converter (ADC)

Analog-Digital Converter (ADC)

The PLECS peripheral library provides two blocks for the STM32 F3 single
mode ADC module, one with a register-based configuration mask and a second
with a GUI. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• T_REG, T_INJ - input ports to trigger ADC conversions
• ADC_INx - input measurement channels
• ADC_DR - auto-size output port to access regular conversion results
• ADC_JDR - auto-size output port to access injected conversion results
• xEOC_INT - output ports for subsequent logic triggered by a conversion end
• xEOS_INT - output ports for subsequent logic triggered by a sequence end
• ADC_Active - output port indicating an active conversion

211

6 STM32 F3xx Peripheral Models

ADC Module Overview

The PLECS single ADC model contains the most relevant features of the
MCU peripheral.

Overview of the STM F3 ADC module [1]

212

Analog-Digital Converter (ADC)

The ADC model implements these logical submodules:

• ADC Converter supporting Single-ended and Differential mode
• Result Registers for Injected and Regular conversion
• ADC Sample Logic for Single and Discontinuous mode
• ADC Interrupt Logic

For simplicity, the external trigger configuration shown in the figure above
is neglected. The trigger to the regular and injected channels are directly ac-
cessed via the corresponding input terminals. This can also be used to model
software triggered conversions. Further, the Analog Watchdog functionalities,
the Watchdog and DMA overrun interrupts as well as the offset calculation
are not part of the model. Stopping an ongoing conversion is either not sup-
ported. Due to simulation efficiency reasons, the ADC can not be operated in
continuous conversion mode.

ADC Converter with Result Registers

The ADC module contains a converter with configurable resolution. An exter-
nal voltage reference is used which, as well as the ADC clock, is a parameter
of the component mask.

The resolution of the converter is set with the field RES of the ADC_CFGR
register given in the next section. This also influences the amount of ADC
clock cycles needed for a conversion. With the RES bits the resolution can be
specified as shown in the table below.

RES[1] RES[0] Resolution Conversion length

0 0 12 bit 12.5 ADCCLK cycles

0 1 10 bit 10.5 ADCCLK cycles

1 0 8 bit 8.5 ADCCLK cycles

1 1 6 bit 6.5 ADCCLK cycles

For the regular channels, the hardware ADC contains a single 16-bit result
register ADC_DR. The results of multiple, sequential regular group conver-
sions are typically moved to the SRAM on the fly via the DMA controller. To
simplify this, the ADC_DR terminal can provide the conversion result for each
of the 16 regular group members separately. For the injected channels, the
ADC_JDR terminal can provide access to the contents of all four ADC_JDRx

213

6 STM32 F3xx Peripheral Models

registers. In the model, both result output ports are auto-sized. This means
that their width is determined by the length of the regular or injected se-
quence.

The component only supports the right aligned result representation mode
meaning that ADC_CFGR.ALIGN always needs to be set to 0. In addition to
this, the model provides an option to represent the conversion results as quan-
tized double integers, which can be chosen with the mask parameter Output
Mode.

214

Analog-Digital Converter (ADC)

ADC Sample Logic

The ADC converter can be used for differential and single-ended conversions
as indicated in the figure below.

Channel selection of the STM F3 ADC module [1]

The DIFSEL register defines if a channel is used in single-ended or differen-
tial mode.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

Reserved

Res.

DIFSEL

DIFSELDIFSEL

ADC_DIFSEL Register structure

215

6 STM32 F3xx Peripheral Models

Bit i of the register sets the mode of channel i.

• 0 - ADC analog input channel-i is configured in single-ended mode
• 1 - ADC analog input channel-i is configured in differential mode

By setting a channel to differential, channel i+1 automatically acts as the neg-
ative input for the conversion. Consequently, channel i+1 cannot be used for a
normal conversion anymore and therefore is not allowed to be part of the reg-
ular nor the injected group.

The ADC model supports the single and discontinuous conversion modes as
well as auto-injected conversions. The continuous conversion mode is not sup-
ported due to simulation efficiency reasons. The ADC_CFGR register is avail-
able to control the ADC conversion mode.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

Res. AWD1CH JAUTO JAWDEN AWDEN AWDSGL JQM JDISCEN DISCNUM

AUTDLYRes. CONT OVRMOD EXTSEL ALIGN RESEXTEN Res. DMACFG DMAEN

DISCEN

ADC_CFGR Register structure

The bit JAUTO is used to automatically trigger an injected group conversion
after the regular group was finished:

• 0 - Automatic injected group conversion disabled
• 1 - Automatic injected group conversion enabled

The bit JDISCEN determines the discontinuous mode for injected channels:

• 0 - Discontinuous mode on injected channels disabled
• 1 - Discontinuous mode on injected channels enabled

The DISCNUM field defines the number of regular channels converted after a
trigger to the regular group was received in discontinuous mode.

DISCNUM Channels converted

000 1 channel

001 2 channels

... ...

110 7 channels

111 8 channels

216

Analog-Digital Converter (ADC)

With DISCEN, the discontinuous mode can be enabled for regular channels:

• 0 - Discontinuous mode on regular channels disabled
• 1 - Discontinuous mode on regular channels enabled

Note Be aware that JDISCEN and DISCEN exclude each other and JAUTO
can not be used with discontinuous mode or triggers to the injected group.

If none of the bits JDISCEN and DISCEN is set, the adc module operates in
single conversion mode.

For more information about the different conversion modes please refer to [1].

Note The adc model assumes the adc not to operate in continuous conversion
mode and to be always active. Therefore ADC_CFGR.CONT needs to be cleared
while using the register-based configuration.

For every analog input, the sample time of a conversion can be configured sep-
arately using the ADC SMPRx registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SMP10

Reserved

SMP11SMP12SMP13SMP14SMP15_0

SMP15[2:1]SMP16SMP17SMP18

ADC_SMPRx Register structure

217

6 STM32 F3xx Peripheral Models

For channels 1 to 13, the sample time can be set as follows:

SMPx Sample Time

000 1.5 cycles

001 2.5 cycles

010 4.5 cycles

011 7.5 cycles

100 19.5 cycles

101 61.5 cycles

110 181.5 cycles

111 601.5 cycles

The ADC operates as a sequencer which has a maximum sequence of 16 con-
versions for the regular group and 4 conversions for the injected group. The
input sampled by each group element as well as the sequence length can be
configured via the ADC_SQRx and the ADC_JSQR registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

L

Reserved

SQ1SQ2 Res.Res.Res.

SQ2Res.Res. SQ3SQ4

ADC_SQRx Register structure

The length of the regular sequence is defined by the field L.

L Sequence length Converted elements / ADC_DR

0000 1 conversion [SQ1]

0001 2 conversion [SQ1 SQ2]

...

1111 16 conversions [SQ1 SQ2 ... SQ16]

218

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

JSQ1

Reserved

JSQ2JSQ3

JSQ4[4:1]

JSQ4_0

JL

ADC_JSQR Register structure

The length of the injected sequence is defined by the field JL.

JL Sequence length Converted elements / ADC_JDR

00 1 conversion [JSQ1]

01 2 conversion [JSQ1 JSQ2]

...

11 4 conversions [JSQ1 JSQ2 JSQ3 JSQ4]

After the last conversion is finished, the sequencer wraps around and restarts
with the first element after the next trigger was received.

For every sequence element, the sampled input can be specified via the corre-
sponding SQx or JSQx fields as follows:

SQx/JSQx Input

x0001 ADC_IN1

x0010 ADC_IN2

... ...

x1101 ADC_IN13

Note The terminals ADC_DR and ADC_JDR are auto-size output terminals.
This means that the width of the terminals is defined by J or JL as shown in
the upper tables.

219

6 STM32 F3xx Peripheral Models

ADC Interrupt Logic

The ADC module also has a connection to the NVIC of the STM F3 MCU. The
model therefore provides the relevant flags at the output to be used in the
simulation.

The register ADC_IER can be used to define which flags are set during opera-
tion.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

Reserved

JEOCIE EOSMPIE ADRDYIEReserved AWD3IE AWD2IE AWD1IE JEOSIEJQOVFIE OVRIE EOSIE EOCIE

ADC_IER Register structure

220

Analog-Digital Converter (ADC)

Reference
1 - Literature Source: STM32 Reference Manual [RM0316]

221

6 STM32 F3xx Peripheral Models

222

7

STM32 F2xx/F4xx Peripheral
Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical

7 STM32 F2xx/F4xx Peripheral Models

user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

224

System Timer for PWM Generation (Output Mode)

System Timer for PWM Generation (Output Mode)

The PLECS peripheral library provides two blocks for the STM32 F2/F4 sys-
tem timer used in output mode. One block has a register-based configuration
mask and a second block features a GUI. In both cases, you should distinguish
between registers configured in the parameter mask and inputs to the block.
Mask parameters are fixed (static) during a simulation and correspond to the
configurations which the embedded software uses during the initialization
phase. Inputs are dynamically changeable while the simulation is running.
The fixed configuration can be entered either using a register-based approach
or a GUI, while the dynamic values supplied at the inputs must correspond to
raw register values. The figure below shows the block and its parameters for
the register-based version.

Register-based Timer model for output mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

225

7 STM32 F2xx/F4xx Peripheral Models

Timer Subtypes

The STM32 F2/F4 MCU’s provide several subtypes of timers which can be
used for input capture, output compare and PWM generation functionalities.
In the presented model, all subtypes listed below are combined in one module
and can be chosen via the component mask:

• 4 Channel 16bit Advanced Timer
• 4 Channel 32bit General Purpose Timer
• 4 Channel 16bit General Purpose Timer
• 2 Channel 16bit General Purpose Timer
• 1 Channel 16bit General Purpose Timer

The focus of this model is the timer output behavior meaning that all input
functionalities are disregarded. This corresponds to the hardware behavior
with all TIM_CCMRx.CCyS cells being set to 00. Further, the One-Shot mode
of the module is not supported. In the following sections, the common part of
all subtypes is explained together with the models limitations. Further, the
differences between the subtypes are described in more detail.

General Counter Behavior

The base of all timer modules is an auto-reload counter driven by a prescaled
counter clock CK_CNT. The period of this time base clock is determined by
the counter clock frequency CK_PSC and the prescaler register TIM_PSC,
both configurable in the mask, as follows:

TCK_CNT =
TIM _PSC + 1

CK_PSC
The counter either operates in Edge-aligned mode with configurable direction
or in Center-aligned mode. In addition to the general counter functionality,
the module also generates output compare interrupt flags when the counter
matches the values stored in the CCRx registers. Those flags are later used to
determine the output levels of the timer module.

Edge-aligned mode

In upcounting direction, the counter counts from 0 to the counter period value
TIM_ARR and generates an update event UEV simultaneous to the counter
overflow.

226

System Timer for PWM Generation (Output Mode)

Edge-aligned mode / Upcounting [1]

In downcounting direction, the counter counts from TIM_ARR to 0 and gener-
ates an update event (UEV) simultaneous to the counter underflow.

Edge-aligned mode / Downcounting [1]

In Edge-aligned mode, the counter period and therefore the PWM period is
calculated as:

TPWM = TCK_CNT · (TIM _ARR + 1)

Center-aligned mode

In this mode, the counter alternates its direction and generates an update
event (UEV) at the counter under- and overflow.

Center-aligned mode [1]

227

7 STM32 F2xx/F4xx Peripheral Models

For Center-aligned mode, the PWM period is calculated as:

TPWM = TCK_CNT · 2 · TIM _ARR

For all modes, the timer model operates in preloaded mode, meaning that the
used configuration is updated simultaneously to the update events. The Repe-
tition Counter functionality is not supported in the model.

Events used for configuration update [1]

In other words, all input terminals of the model, except the CCER register, are
sampled with the instants of the update events.

The timer mode, direction and output compare flag behavior can be set jointly
using the TIM_CR1 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CEN
8

Reserved UDISCKD ARPE CMS DIR OPM URS

Timer Mode Configuration

The CKD field only has an effect on the subtypes with PWM dead time gener-
ation and is therefore described in a later section. The register cell CMS can
be used to determine the counter mode and the output compare flag behavior.

• 00 - Edge-aligned mode
• 01 - Center-aligned mode 1 - compare flags only set when counting down
• 10 - Center-aligned mode 2 - compare flags only set when counting up
• 11 - Center-aligned mode 3 - compare flags set when counting up and down

In Edge-aligned mode, the DIR bit determines the counter direction.

• 0 - Upcounting
• 1 - Downcounting

228

System Timer for PWM Generation (Output Mode)

The module assumes the timer as always active and to be operated in
preloaded mode with the update event generation always enabled. There-
fore, the following settings are mandatory when using the register-based ver-
sion.

• TIM_CR1.ARPE = 1

• TIM_CR1.UDIS = 0

• TIM_CR1.CEN = 1

Initialization and Synchronization

The timer allows a counter initialization in the component mask. Further, the
initial counter direction can be specified which only affects the Center-Aligned
Mode. With a positive flank at the SYNC terminal, the counter is reset to zero
and the dynamic configuration is updated. The initialization and synchroniza-
tion features enable time-shifted pwm signals using multiple timer modules.

Interrupt Flags

The timer module can generate interrupt flags at the CCxIF and UIF output
terminals. Those flags are based on the counter compare and update event
flags and can be used in the model to, i.e., trigger an ADC conversion or a new
control step via the PIL block. Note that in the model those flags are imple-
mented as pulses.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UIE
8

CC1IECC2IECC1DE
CC3IE

CC4IECOMIETIEBIEUDECC2DECC3DECC4DECOMDETDERes.

Interrupt enable register

The interrupt flags can be enabled with the bits of the TIM_DIER regis-
ter.

• 0 - interrupt disabled
• 1 - interrupt enabled

Note Only the four channel subtype implementations make use of all CCxIE
fields.

229

7 STM32 F2xx/F4xx Peripheral Models

Output Mode Controller

The output-mode controller generates up to 4 reference signals OCyREF based
on the output compare flags of the counter.

Output Mode Controller for OCyREF [1]

The controller implements several output modes defining the behavior of
OCyREF. With the register fields TIM_CCMRx.OCyM, the mode of each ref-
erence signal can be specified separately.

• 000 - Frozen, comparisons have no effect on OCyREF
• 001 - Active match mode, OCyREF forced high when CTR = CCRy

• 010 - Inactive match mode, OCyREF forced low when CTR = CCRy

• 011 - Toggle mode, OCyREF toggled when CTR = CCRy

• 100 - Force inactive mode, OCyREF always forced low
• 101 - Force active mode, OCyREF always forced high
• 110 - PWM Mode 1
• 111 - PWM Mode 2

Because the reference signal mode is supposed to be changed during simula-
tion, the OCyM fields can be accessed via the input terminals. Note that those
are also updated with the update events generated by the timer.

The hardware options to externally clear the reference signal are not sup-
ported in the model. Further, the break function of the timer is not part of the
model assuming the flag BDTR.MOE is always set. Therefore it is mandatory
to set MOE to 1 while using the resister-based version.

230

System Timer for PWM Generation (Output Mode)

The options available in the output stage majorly depend on the timer subtype
and therefore are discussed in the subsequent sections. The configuration of
all output stages is done with the CCER register.

Note The CCER is accessed via the input terminals and is not preloaded.
This means that a change on the CCER input directly effects the outputs.

231

7 STM32 F2xx/F4xx Peripheral Models

4 Channel Advanced Timer

The Advanced Timer consists of a timer and a 4 channel output stage. The
timer has a width of 16-bit and can be operated in Edge-aligned (up and
down) as well as Center-aligned mode. For channels 1 to 3, the output stage
enables complementary outputs with dead time and configurable polarity.

Output stage of Advanced Timer (channel 1 to 3) [1]

For channel 4, the output stage shown below only supports configurable polar-
ity.

Output stage of Advanced Timer (channel 4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

232

System Timer for PWM Generation (Output Mode)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NP CC1NECC2ECC3ECC4E CC2PCC3PCC4P CC2NECC3NE CC2NPCC3NPReserved

Channel-wise configuration of output stage

With the CCxP and CCxNP fields, the polarity of the output signal can be in-
verted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Those bits further effect the output stage behavior for channels 1 to 3. The
table below shows this for both outputs operated with equal polarity.

CCxNE CCxE Behavior

0 0 OCx & OCxN inactive

0 1 OCx = OCxREF, OCxN inactive

1 0 OCx inactive, OCxN = OCxREF

1 1 Complementary output mode with dead time

The dead time for each positive flank in OCx and OCxN is configured with the
TIM_BDTR register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTG
8

LOCKOSSIOSSRBKEBKPAOEMOE

Dead time configuration

The dead time (DT) can be calculated based on the cell DTG as shown below.
The bits DTG[7:5] determine the formula used for its calculation.

• 0xx - DT = DTG [7 : 0] · tdtg with tdtg = tDTS

• 10x - DT = (64 + DTG [5 : 0]) · tdtg with tdtg = 2 · tDTS

• 110 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 8 · tDTS

• 111 - DT = (32 + DTG [4 : 0]) · tdtg with tdtg = 16 · tDTS

233

7 STM32 F2xx/F4xx Peripheral Models

The dead time clock tDTS is related to the timer clock period TCK_CNT and
can be configured with the field CKD of the TIM_CR1 register.

• 00 - tDTS = TCK_CNT

• 01 - tDTS = 2 · TCK_CNT

• 10 - tDTS = 4 · TCK_CNT

• 11 - not supported

This subtype implementation uses the full set of inputs, outputs and configu-
ration registers.

4 Channel General Purpose Timer

This subtype is available with a 16-bit or 32-bit counter implementation both
supporting Edge-aligned (up and down), as well as Center-aligned modes. The
4 channel output stage shown below only supports configurable polarity.

Output stage of general purpose timer (channel 1/4) [1]

The CCER register can be used to configure all channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC3ECC4E CC2PCC3PCC4P CC2NPCC3NPCC4NP Res. Res. Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)

234

System Timer for PWM Generation (Output Mode)

• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CCxNP bits have no effect on the model.

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR4, ARR,
SYNC, OC1M - OC4M,
CCER

x

Output OC1 - OC4, CC1IF-
CC4IF, UIF

OC1N - OC3N

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• GPIO Mode for unused outputs

235

7 STM32 F2xx/F4xx Peripheral Models

2 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The 2 channel output stage shown below only supports configurable
polarity.

Output stage of general purpose timer (channel 1/2) [1]

The CCER register can be used to configure both channels of the output stage
separately.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPCC2ECC2PCC2NPReserved Res. Res.

Channel-wise configuration of output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CCxNP bits have no effect on the model.

236

System Timer for PWM Generation (Output Mode)

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1 - CCR2, ARR,
SYNC, OC1M - OC2M,
CCER

CCR3 - CCR4, OC3M-
OC4M

Output OC1 - OC2, CC1IF -
CC2IF, UIF

OC3 - OC4, OC1N -
OC3N, CC3IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC3IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

1 Channel General Purpose Timer

This subtype contains a 16-bit counter only supporting Edge-aligned, Upcount-
ing mode. The single channel output stage shown below only supports config-
urable polarity.

Output stage of general purpose timer (channel 1/1) [1]

237

7 STM32 F2xx/F4xx Peripheral Models

The CCER register can be used to configure the single channel output stage.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

CC1E
8

CC1PCC1NPReserved Res.

Configuration of the output stage

With the CCxP bits, the polarity of the output signal can be inverted.

• 0 - Active High (regular polarity)
• 1 - Active Low (inverted polarity)

With the CCxE and CCxNE bits, the output can be enabled.

• 0 - Output Enabled, OCx/OCxN defined by OCxREF
• 1 - Output Disabled, OCx/OCxN defined by GPIO Mode

Note The CC1NP bit has no effect on the model.

The terminals used by this subtype are shown in the table below.

Terminal Group Utilized Unused

Input CCR1, ARR, SYNC,
OC1M, CCER

CCR2 - CCR4, OC2M-
OC4M

Output OC1, CC1IF, UIF OC2 - OC4, OC1N -
OC3N, CC2IF - CC4IF

Unused mask registers, register cells and further limitations are listed be-
low.

• TIM_BDTR
• TIM_CR1.CKD
• TIM_DIER.CC2IE - TIM_DIER.CC4IE
• GPIO Mode for unused outputs
• TIM_CR1.CMS only supports 00

• TIM_CR1.DIR only supports 0

238

System Timer for PWM Generation (Output Mode)

GPIO Mode

In case that an output enable circuit is configured as inactive, the output level
is determined by the GPIO Mode. To mimic this in the simulation model, the
parameter GPIO Mode is available in the register-based version.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

OC1
8

OC1NOC2N OC2OC3OC3NOC4Reserved

Configuration of GPIO Mode

With the bits OCx and OCxN, the corresponding output mode can be set.

• 0 - Pull-Down (Inactive Low)
• 1 - Pull-Up (Inactive High)

Note This Register is available only in the simulation.

239

7 STM32 F2xx/F4xx Peripheral Models

Analog-Digital Converter (ADC)

The PLECS peripheral library provides two blocks for the STM32 F2/F4 single
ADC module, one with a register-based configuration mask and a second with
a GUI. The figure below shows the appearance of the block.

ADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a GUI to simplify the configuration.

Both ADC blocks interface with other PLECS components over the following
terminal groups.

• T_REG, T_INJ - input ports to trigger ADC conversions
• ADC_INx - input measurement channels
• ADC_DR - auto-size output port to access regular conversion results
• ADC_JDR - auto-size output port to access injected conversion results
• xEOC_INT - output ports for subsequent logic triggered by a conversion end
• ADC_Active - output port indicating an active conversion

240

Analog-Digital Converter (ADC)

ADC Module Overview

The PLECS single ADC model contains the most relevant features of the
MCU peripheral.

Overview of the STM F4 ADC module [1]

241

7 STM32 F2xx/F4xx Peripheral Models

The ADC model implements these logical submodules:

• ADC Converter with Result Registers for Injected and Regular conversion
• ADC Sample Logic for Single, Scan and Discontinuous mode
• ADC Interrupt Logic

For simplicity, the external trigger configuration shown in the figure above is
neglected. The trigger to the regular and injected channels are directly ac-
cessed via the corresponding input terminals. Further, the Analog Watchdog
functionalities as well as the Watchdog and DMA overrun interrupts are not
part of the model. Due to simulation efficiency reasons, the ADC can not be
operated in continuous conversion mode.

ADC Converter with Result Registers

The ADC module contains a converter with configurable resolution. An exter-
nal voltage reference is used which can be defined in the component mask.

The period of the ADC clock, and therefore the time base for the module, is
determined based on PCLK2 and the clock divider specified in the ADC_CCR
register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

MULTI

171819202122232425262728293031

8

ReservedDELAYRes.DDSDMA

ADCPREReservedVBATETSVREFEReserved

ADC_CCER Register structure

By using the ADCPRE bits the ADC time base can be specified as follows:

ADCPRE[1] ADCPRE[0] ADC clock

0 0 PCLK2 / 2

0 1 PCLK2 / 4

1 0 PCLK2 / 8

1 1 PCLK2 / 16

242

Analog-Digital Converter (ADC)

The resolution of the converter can be specified with the fields RES of the
ADC_CR1 register given in the next section. This also influences the amount
of ADC clock cycles needed for a conversion. With the RES bits the resolution
can be specified as shown in the table below.

RES[1] RES[0] Resolution Conversion length

0 0 12 bit 15 ADCCLK cycles

0 1 10 bit 13 ADCCLK cycles

1 0 8 bit 11 ADCCLK cycles

1 1 6 bit 9 ADCCLK cycles

For the regular channels, the hardware ADC contains a single 16-bit result
register ADC_DR. The results of multiple, sequential regular group conver-
sions are typically moved to the SRAM on the fly via the DMA controller. To
simplify this, the ADC_DR terminal can provide the conversion result for each
of the 16 regular group members separately. For the injected channels, the
ADC_JDR terminal can provide access to the contents of all four ADC_JDRx
registers. In the model, both result ports are auto-sized. This means that their
width is determined by the length of the regular or injected sequence.

The component only supports the right aligned result representation mode
meaning that ADC_CR2.ALIGN always needs to be set to 0. In addition to
this, the model provides an option to represent the conversion results as quan-
tized double integers, which can be chosen with the mask parameter Output
Mode.

ADC Sample Logic

The ADC model supports the single, scan and discontinuous conversion modes
as well as auto-injected conversions. The continuous conversion mode is not
supported due to simulation efficiency reasons. The ADC_CR1 and ADC_CR2
registers can be used to choose and control the used conversion mode.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

AWDCH

171819202122232425262728293031

8

EOCIEAWDIEJEOCIESCANAWDSGLJAUTODISCENJDISCENDISCNUM

ReservedJAWDENAWDENRESOVRIEReserved

ADC_CR1 Register structure

243

7 STM32 F2xx/F4xx Peripheral Models

The DISCNUM field defines the number of regular channels converted after a
trigger to the regular group was received in discontinuous mode.

DISCNUM Channels converted

000 1 channel

001 2 channels

... ...

110 7 channels

111 8 channels

The bit JDISCEN determines the discontinuous mode for injected channels:

• 0 - Discontinuous mode on injected channels disabled
• 1 - Discontinuous mode on injected channels enabled

With DISCEN, the discontinuous mode can be enabled for regular channels:

• 0 - Discontinuous mode on regular channels disabled
• 1 - Discontinuous mode on regular channels enabled

The bit JAUTO can be used to automatically trigger an injected group conver-
sion after the regular group was finished:

• 0 - Automatic injected group conversion disabled
• 1 - Automatic injected group conversion enabled

Note Be aware that JDISCEN and DISCEN exclude each other and JAUTO
can not be used with discontinuous mode or triggers to the injected group.

With the bit SCAN, the user can activate the scan mode of the component al-
lowing multiple conversions triggered by a single event.

• 0 - Scan mode disabled
• 1 - Scan mode enabled

If none of the bits JDISCEN,DISCEN and SCAN is set, the adc module op-
erates in single conversion mode. The bits JEOCIE and EOCIE are further
described in the interrupt section.

For more information about the different conversion modes please refer to [1].

244

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

ADON

171819202122232425262728293031

8

DMADDSEOCSALIGNReserved

JEXTENJSWSTRTEXTSELReserved SWSTART EXTEN Reserved JEXTSEL

CONTReserved

ADC_CR2 Register structure

The field EOCS configures when the EOC flag is set while not in single con-
version mode.

• 0 - EOC is set at the end of each regular group
• 1 - EOC is set at the end of each single regular conversion

Note The adc model assumes the adc not to operate in continuous conversion
mode and to be always active. Therefore ADC_CR2.CONT needs to be cleared
and ADC_CR2.ADON needs to be set while using the register-based configura-
tion.

For every analog input, the sample time of a conversion can be configured sep-
arately using the ADC SMPRx registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SMP10

Reserved

SMP11SMP12SMP13SMP14SMP15_0

SMP15[2:1]SMP16SMP17SMP18

ADC_SMPRx Register structure

Note that SMP16-SMP18 have no effect because the measurements for the
temperature sensor as well as the internal reference and the battery voltage
are not part of the model. For every other channel, the sampling time can be
configured as follows:

245

7 STM32 F2xx/F4xx Peripheral Models

SMPx Sampling Time

000 3 cycles

001 15 cycles

010 28 cycles

011 56 cycles

100 84 cycles

101 112 cycles

110 144 cycles

111 480 cycles

The ADC operates as a sequencer which has a maximum sequence of 16 con-
versions for the regular group and 4 conversions for the injected group. The
input sampled by each group element as well as the sequence length can be
configured via the ADC_SQRx and the ADC_JSQR registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

SQ13

Reserved

SQ14SQ15

SQ16[4:1]

SQ16_0

L

ADC_SQRx Register structure

The length of the regular sequence is defined by the field L.

L Sequence length Converted elements / ADC_DR

0000 1 conversion [SQ1]

0001 2 conversion [SQ1 SQ2]

...

1111 16 conversions [SQ1 SQ2 ... SQ16]

246

Analog-Digital Converter (ADC)

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

JSQ1

Reserved

JSQ2JSQ3

JSQ4[4:1]

JSQ4_0

JL

ADC_JSQR Register structure

The length of the injected sequence is defined by the field JL.

JL Sequence length Converted elements / ADC_JDR

00 1 conversion [JSQ4]

01 2 conversion [JSQ3 JSQ4]

...

11 4 conversions [JSQ1 JSQ2 JSQ3 JSQ4]

After the last conversion is finished, the sequencer wraps around and restarts
with the first element after the next trigger was received.

For every sequence element, the sampled input can be specified via the corre-
sponding SQx or JSQx fields as follows:

SQx/JSQx Input

x0000 ADC_IN0

x0001 ADC_IN1

... ...

x1111 ADC_IN15

Note The terminals ADC_DR and ADC_JDR are auto-size output terminals.
This means that the width of the terminals is defined by J or JL as shown in
the upper tables.

247

7 STM32 F2xx/F4xx Peripheral Models

ADC Interrupt Logic

The ADC module also has a connection to the NVIC of the STM F2/F4 MCU.
The EOC flag is set when either the regular channel or the injected chan-
nel indicates an end of conversion. The JEOC flag is set when the injected
group indicates a finished conversion. The fields ADC_CR1.EOCIE and
ADC_CR1.JEOCIE can be used to configure the adc to provide an interrupt
pulse to the corresponding output terminals.

• 0 - no interrupt pulses are generated at the EOC_INT/JEOC_INT terminal
• 1 - interrupt pulses are generated at the EOC_INT/JEOC_INT terminal

Even if there typically won’t be a model of the NVIC within the simulation,
those pulses can i.e. be used to trigger the PIL block modeling a control step
triggered by a finished adc conversion.

248

Analog-Digital Converter (ADC)

Reference
1 - Literature Source: STM32 Reference Manual [RM0090] or [RM0033]

249

7 STM32 F2xx/F4xx Peripheral Models

250

8

Microchip dsPIC33F Peripheral
Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical

8 Microchip dsPIC33F Peripheral Models

user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

252

Microchip Motor Control PWM

Microchip Motor Control PWM

The PLECS peripheral library provides two blocks for the Microchip Motor
Control PWM (MCPWM) module, one with a register-based configuration
mask and a second with a graphical user interface. The figure below shows
the register-based version of the MCPWM module.

Register-based MCPWM module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both MCPWM blocks interface with other PLECS components over the follow-
ing terminal groups:

• PDCx - input ports for duty cycle register
• PSECMP - input port for special event trigger compare register
• POVDCON - input port for override control register
• PWMIF - output port for PWM interrupt flag
• SEVT - output port for special event trigger
• PWMHx/Lx - output ports for PWM signals

Note In the PLECS MCPWM module, PWM Faults have not been modeled

253

8 Microchip dsPIC33F Peripheral Models

MCPWM Module Overview

The PLECS MCPWM model implements the most relevant features of the
MCU peripheral.

Overview of the MCPWM module[1]

The MCPWM model implements the following features:

• PWM Clock Control
• PWM Output Control and Resolution
• PWM Output Override
• Interrupt Control
• Special Event Trigger

254

Microchip Motor Control PWM

• Dead Time Generator

A section summarizing the differences of the PLECS MCPWM module as com-
pared to the actual MCPWM module is provided in the “Summary” (on page
263) section.

PWM Clock Control

The modeled MCPWM realizes a counter that can operate in three different
modes for the generation of asymmetrical and symmetrical PWM signals. The
three supported modes are:

• Free Running mode
• Continuous Up/Down mode
• Continuous Up/Down mode with interrupts for double PWM updates

The counter for these modes is visualized below.

Counter modes [1]

In Free Running mode, the counter is incremented from 0 to a counter pe-
riod PTPER using a counter clock operated at a clock frequency of FCY . The
PTPER value corresponding to a desired PWM frequency (FPWM) can be cal-
culated as:

255

8 Microchip dsPIC33F Peripheral Models

PTPER =
FCY

FPWM · PTMRPrescaler
− 1

When the counter reaches the period (PTPER), the subsequent count value
is reset to zero, duty cycle (PDCx) and special event (PSECMP) registers are
updated, and the sequence is repeated.
In the Continuous Up/Down mode, and Continuous Up/Down mode with inter-
rupts for double PWM updates, the counter is incremented from 0 to a counter
period PTPER and then decremented back to 0 using a counter clock operated
at a clock frequency of FCY . The PTPER value corresponding to a desired
PWM frequency (FPWM) can be calculated as:

PTPER =
FCY

2 · FPWM · PTMRPrescaler
− 1

In the Continuous Up/Down mode, when the counter reaches 0, the duty cycle
(PDCx) and special event (PSECMP) registers are updated.
In the Continuous Up/Down mode with interrupts for double PWM updates,
the duty cycle (PDCx) and special event (PSECMP) registers are updated
when the counter reaches 0 and PTPER.

Note In the PLECS MCPWM module, Single Event Mode is not allowed.

While the system clock and the period counter value are separately defined
in the mask parameters, the counter mode and the clock divider are jointly
configured in the PTCON register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

PTMOD<1:0>
8

PTCKPS<1:0>PTOPS<3:0>PTSIDLPTEN

PTCON Register Configuration [1]

The input clock (TCY) derived from the oscillator source can be prescaled
using the PTCKPS bits in the PTCON register. Additionally, the counter
mode selected using the PTMOD bits and the time-based output post scalar
(PTOPS) bits determine the generation of the PWM interrupt flag.

Example Configuration – Step 1

This example shows the configuration of the PWM module operating in Free
Running mode with a 50 µs period. The PTCON register is configured to:

256

Microchip Motor Control PWM

PTCON = 4 =̂ 0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
PTOPS

0 1︸︷︷︸
PTCKPS

0 0︸︷︷︸
PTMOD

According to this configuration, the time-based submodule is operating in the
Free Running mode with a timer clock period four times the system clock pe-
riod. For a PTPER value of 999 and an 80 MHz system clock, the resulting
PWM signal has the following period:

TPWM = (PTPER + 1) · PTCKPS

FCY
= 50 µs.

PWM Output Control and Resolution

The MCPWM model for a non-zero duty cycle results in outputs of the PWM
generators to be driven active at the beginning of the PWM period. Each
PWM output will be driven inactive when the value of the counter matches
the duty cycle value of the PWM generator. If the value of the duty cycle reg-
ister is zero, the output on the corresponding PWM pin is inactive for the en-
tire PWM period. The PWM output is active for the entire period if the value
of PDC is greater than PTPER.

Note In the implemented model, immediate update of the PDC and PSECMP
registers is not modeled.

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9

1617181920212223

8

PWMPIN HPOL LPOL ALTI2C BOREN FPWRT<2:0>

FPOR:POR Register Configuration [1]

The HPOL and LPOL bits in the FPOR:POR register determine the output
polarity of the high-side and low-side output pins of the PWM generators. For
example, if the LPOL bit is set, then the low-side output is high when the
PWM is active and low when the PWM is inactive. If the bit is cleared, then

257

8 Microchip dsPIC33F Peripheral Models

the low-side output is low when the PWM is active and high when the PWM
is inactive.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

PEN1L
8

PEN1HPEN2LPEN2HPEN3LPEN3HPEN4LPEN4HPMOD1PMOD2PMOD3PMOD4

PWMCON1 Register Configuration [1]

In the MCPWM, each PWM generator can be operated in either complemen-
tary or independent mode. In complementary mode both output pins cannot
be active simultaneously. Additionally, a dead time is inserted during device
switching making both outputs inactive for a short period. In independent
mode there are no restrictions on the state of the pins for a given output pin
pair. Additionally, the dead time module is disabled when the PWM module is
operated in independent mode. The mode for each of the PWM generators is
selected by configuring the bits PMOD4:PMOD1 in the PWMCON1 register.
The first bit of the register PDC determines whether the PWM signal edge
occurs at the TCY or TCY

2 boundary. The figure below illustrates the effect of
this bit on the PWM output.

Duty cycle resolution timing diagram, Free Running mode, and 1:1 prescaler
selection [1]

PWM Output Override

The output pins of the MCPWM module can be configured to be manually
driven to a specific state, independent of the duty cycle comparison units. This

258

Microchip Motor Control PWM

feature is useful when controlling various types of electrically commuted mo-
tors. The POVDCON register is used to control the override function for each
PWM output.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

POUT1L

8

POUT1HPOUT2HPOUT3LPOUT4H POUT4L POUT3H POUT2LPOVD4H POVD3LPOVD3HPOVD4L POVD2H POVD2L POVD1H POVD1L

POVDCON Register Configuration [1]

The POVDxL/H bits in the POVDCON register are used to control whether
the corresponding PWM pins will be overridden. The POUTxL/H bits in the
POVDCON register are used to control the state of the corresponding PWM
output pins. When the POVDxH/L bits are set, the corresponding PWM out-
puts are controlled by the corresponding duty cycle comparison unit. When
the POVDxH/L bits are cleared, the corresponding PWM outputs are con-
trolled by state of the corresponding POUTxL/H bits. If the POUTxL/H bit is
set then the PWM output is driven to an active state. When the POUTxL/H
bit is cleared, the PWM output is driven to an inactive state.

When operated in Complementary PWM Output Mode, the MCPWM does not
allow a pair of PWM pins to become simultaneously active thus restricting
some override configurations. In complementary output mode, the high-side
pin takes priority. Also, in this mode the dead time insertion is still performed
even when PWM channels are overridden manually.

If the output synchronization bit (OSYNC) is set, all output override per-
formed using the POVDCON register will be synchronized to the PWM time
base. The synchronization for both center-aligned and edge aligned mode oc-
curs when the counter is at zero. This functionality allows the generation of
an unwanted narrow pulse on the PWM output pins.

Note When OSYNC bit is cleared, the PLECS MCPWM module assumes
that the POUT input signals are synchronized to the TCY clock. Thus the cor-
responding PWM pins are set or cleared instantaneously.

The override bits can be used to control commutation of the PWM outputs. In
this example, all the PWM pairs in the MCPWM module are operated in in-
dependent mode. The duty cycle compare unit can be used in conjunction with
the POVDCON register. This enables the user to control the current delivered
to the load using the duty cycle compare unit and the POVDCON register to
control the commutation.

259

8 Microchip dsPIC33F Peripheral Models

PWM output override example [1]

Special Event Trigger

The MCPWM can be configured to trigger the Analog-to-Digital (ADC) con-
verter using the special event compare register (PSECMP). This allows ADC
sampling and conversion timing to be synchronized to the PWM time base and
provides the flexibility of programming the start of conversion at any point
within the PWM period.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

SEVTCMP<14:0>SEVTDIR

PSECMP Register Configuration [1]

260

Microchip Motor Control PWM

The PWM counter register is compared to the SEVTCMP bits in the PSECMP
register and generates a trigger signal when the counter value is equal to the
SEVTCMP bits. In Up/Down Count mode, the SEVTDIR bit provides added
flexibility on the generation of the trigger signal. When this bit is set, the
trigger is generated on a match event when the counter is counting down.
When the bit is set to zero, the trigger is generated on a match event when
the counter is counting up.

Additionally, the Special Event Trigger Postscaler (SEVOPS) bits in the PWM-
CON2 register allows a 1:1 to 1:16 post scale ratio. These bits can be config-
ured if the ADC conversions are not required every PWM cycle.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

UDIS
8

OSYNCIUESEVOPS<3:0>

PWMCON2 Register Configuration [1]

Interrupt Control

The MCPWM module can be configured to generate an interrupt flag depend-
ing on the mode of operation and the time base postscaler (PTOPS) bits in the
PTCON register. In the model the interrupt flag (PWMIF) is internally reset
automatically after one simulation step.

In the Continuous Up/Down mode with interrupts for double PWM updates, an
interrupt event is generated each time the counter equals 0 and PTPER. The
postscaler selection bits are ignored in this mode.

In the Free Running mode the interrupt flag is generated when the counter
is reset to 0. In the Continuous Up/Down mode, the interrupt flag is gener-
ated when the counter is equal to 0 and the counter is counting up. In both of
these modes, the postscaler bits can be used to reduce the frequency of inter-
rupt events.

Dead Time Generator

In independent mode, the dead-time module is inactive and no dead-time is
inserted between the high-side and low-side PWM signals of a PWM output
generator. When operated in complementary mode, each PWM output gener-
ator can be configured to have some dead time between the turn on and turn
off of the high-side and low-side PWM signals.

261

8 Microchip dsPIC33F Peripheral Models

Dead time insertion [1]

The Dead Time Control Register 1 (PDCTON1) is used to configure two dif-
ferent dead-time units (Unit A and Unit B). The DTA bits are used to assign
a 6-bit dead-time value for Unit A. The DTAPS bit is used to configure the
dead-time clock as a multiple of the system clock (TCY). The corresponding
bits DTB and DTBPS are used to configure Unit B.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

DTA<5:0>DTAPS<1:0>DTB<5:0>DTBPS<1:0>

PDTCON1 Register Configuration [1]

The dead-time for Unit A and Unit B, are calculated as follows:

Dead T ime = (DTx + 1) · TCY ·DTxPS ,

where x refers to Unit A or B.

The Dead Time Control Register 2 (PDCTON2) contains configuration bits
that are used to control the insertion of dead time when the high-side or low-
side PWM signals become active. The DTS1I - DTS4I bits select the dead time
inserted before PWML1 - PWML4, respectively, are driven active. The DTS1A
- DTS4A bits select the dead time inserted before PWMH1 - PWMH4, respec-
tively, are driven active.

262

Microchip Motor Control PWM

7 6 5 4 3 2 1 015 14 13 12 11 10 9

DTS1I
8

DTS1ADTS2IDTS2ADTS3IDTS3ADTS4IDTS4A

PDTCON2 Register Configuration [1]

Summary of PLECS Implementation

The PLECS MCPWM module models the major functionality of the actual
MCPWM module. Below is a summary of differences of the PLECS MCPWM
module compared to the actual MCPWM module:

• PWM Faults are not supported.
• Single Event Mode is not supported.
• Immediate update of the PDC and PSECMP registers is not supported.
• When OSYNC bit is cleared, the PLECS MCPWM module assumes that the

POUT input signals are synchronized to the Tcy clock. Thus the correspond-
ing PWM pins are set or cleared instantaneously.

• PWM update lockout is not supported.
• The interrupt flag (PWMIF) is internally reset automatically after one sim-

ulation step.

263

8 Microchip dsPIC33F Peripheral Models

Microchip Motor Control ADC

The PLECS peripheral library provides two blocks for the Microchip Motor
Control ADC (MCADC) module, one with a register-based configuration mask
and a second with a graphical user interface. The figure below shows the ap-
pearance of the register-based version.

Register-based MCADC module model

The register-based version allows the user to directly enter register values in
decimal, binary, or hexadecimal notation. For convenience, the peripheral li-
brary also provides a component with a graphical user interface to simplify
the configuration.

Both MCADC blocks interface with other PLECS components over the follow-
ing terminal groups:

• ANx - input ports for duty cycle register
• Triggers - input port for INT0, Timer, and PWM triggers
• ADCBUFx - output port for ADC buffer register
• ADIF - output port for ADC interrupt flag

Note In the PLECS MCADC module, the GP timer triggers (Timer 3 and
Timer 5) and Motor Control PWM 1 and 2 triggers have been lumped into a sin-
gle Timer and PWM trigger, respectively.

264

Microchip Motor Control ADC

MCADC Module Overview

The PLECS MCADC model implements the most relevant features of the
MCU peripheral.

Overview of the MCADC module without DMA [2]

The MCADC model implements the following features:

• ADC Configuration

265

8 Microchip dsPIC33F Peripheral Models

• ADC Sampling and Conversion
• Multi-channel ADC Sampling Mode
• ADC Input Selection Mode
• ADC Interrupt Logic
• ADC Buffer Fill Mode

A section summarizing the limitation of the PLECS MCADC module as com-
pared to the actual MCADC module is provided in the “Summary” (on page
274) section.

ADC Configuration

The MCADC module can be operated either in 10-bit or 12-bit operation mode.
The 12-bit Operation Mode bit (AD12B) in the ADCON1 register allows the
ADC module to function as either a 10-bit, 4-channel ADC (when the AD12B
bit is cleared) or a 12-bit, single-channel ADC (when the AD12B bit is set).
In 10-bit mode, the CHPS bits in the ADCON2 register can be configured to
operate the MCADC module to convert:

• only CH0

• CH0 and CH1

• CH0, CH1, CH2, and CH3

The VCFG bits in the ADCON2 register allow the selection of the voltage ref-
erences for the MCADC module. The voltage reference high (VREFH) and the
voltage reference low (VREFL) for the ADC module can be supplied from the
internal AVDD and AVSS voltage rails or the external VREF+ and VREF− in-
put pins. The table below summarizes the different configurations that are
possible by setting the VCFG bits.

VCFG VREFH VREFL

000 AVDD AVSS

001 AVDD VREF−

010 VREF+ AVSS

011 VREF+ VREF−

1xx AVDD AVSS

266

Microchip Motor Control ADC

The MCADC module clock (TAD) can be configured to use the system clock
(TCY) or a dedicated internal RC clock (TADRC). The figure below summarizes
the generation of the ADC clock.

ADC Clock Generation [2]

While the system clock and the period counter value are separately defined in
the mask parameters, the ADC clock source selection (ADRC) and the clock
divider (ADCS) are jointly configured in the ADCON3 register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

SAMC<4:0>ADRC ADCS<7:0>

ADCON3 Register Configuration [2]

The clock divider is used to lower the frequency when the ADC clock is de-
rived from the system clock. The ADCS bits allow the clock to be scaled to
one of 64 settings, from 1:1 to 1:64. The table below summarizes the effect the
ADCS and ADRC bits have on the ADC clock period.

ADRC ADC Clock Period (TAD)

0 TCY · (ADCS + 1)

1 TADRC

Note ADCS values over 63 are reserved in the actual hardware and will be
flagged as an error in the PLECS MCADC module.

The MCADC module can be configured to output the ADC results in four dif-
ferent numerical formats. The FORM bits in the ADCON1 register select the
data format. Further, in the PLECS MCADC module the output format can
be configured as quantized double format for convenience. The Output mode

267

8 Microchip dsPIC33F Peripheral Models

block parameter selects if the FORM bits are used or if the output is pre-
sented as a quantized double format. The table below summarizes the differ-
ent available formats.

FORM Output Mode Data Format

00 Use FORM bits Unsigned Integer

01 Use FORM bits Signed Integer

10 Use FORM bits Unsigned Fractional

11 Use FORM bits Signed Fractional

xx Quantized Double Quantized Double

ADC Sampling and Conversion

Automatic Sample and Triggered Conversion Sequence [2]

The actual MCADC module can be configured to operate in different modes.
Below is a list of the possible configurations for the actual MCADC:

• Manual Sample and Manual Conversion Sequence
• Manual Sample and Automatic Conversion Sequence
• Manual Sample and Triggered Conversion Sequence

268

Microchip Motor Control ADC

• Automatic Sample and Manual Conversion Sequence
• Automatic Sample and Automatic Conversion Sequence
• Automatic Sample and Triggered Conversion Sequence
In the PLECS MCADC module only the Automatic Sample and Triggered
Conversion Sequence mode has been modeled. The figure above summarizes
the operation of this mode.
In this mode, the sampling of the channels starts automatically after a conver-
sion is completed. Automatic sampling is enabled by setting the ASAM bit in
the ADCON1 register. The conversion is started upon trigger event from one
of the external SOC trigger sources. This allows ADC conversion to be syn-
chronized with the internal or external events. The external trigger source is
selected by configuring the SSRC bits to
• 001 when using External Interrupt Trigger
• 010 or 100 when using Timer Interrupt Trigger
• 011 or 101 when using Motor Control PWM Special Event Trigger

Note In the PLECS MCADC module, clearing the ASAM bit is not allowed.
This bit must always be set. Additionally, in the actual hardware the ADC mod-
ule takes some time to stabilize. There is no such requirement in the imple-
mented MCADC module.

The MCADC can be operated either as a single-channel 12-bit or multi-
channel 10-bit module. The time required to complete a conversion (TCONV) is
dependent on whether the ADC is operated in 12-bit or 10-bit mode. The table
below summarizes the amount of time required to completed one conversion in
the two modes:

Mode TCONV

10-bit 12 · TAD

12-bit 14 · TAD

Multi-channel ADC Sampling Mode

The MCADC works as single channel converter when operated in as a 12-bit
ADC module. In this mode the inputs to CH1, CH2, and CH3 are ignored and

269

8 Microchip dsPIC33F Peripheral Models

only CH0 is converted. When operated as a 10-bit ADC module, the MCADC
can be configured to operate as a multi-channel ADC module. In the multi-
channel operation, the MCADC module can be configured to operate in simul-
taneous or sequential sampling modes. In simultaneous sampling mode, the
sampling of all channels is stopped when an SOC trigger is received. The fig-
ure below shows the timing diagram of a 4-channel module operated with si-
multaneous sampling in the Automatic Sample and Triggered Conversion Se-
quence mode.

4-Channel Simultaneous Sampling [2]

When the multi-channel ADC module is operated in sequential mode, the
sampling for CH0 ends when an SOC trigger is received. The sampling of
CH1 ends once the conversion of CH0 is completed. The same logic applies
to the end of sampling for CH2 and CH3. The figure below shows the timing
diagram of a 2-channel module operated with sequential sampling in the Au-
tomatic Sample and Triggered Conversion Sequence mode.

2-Channel Sequential Sampling [2]

Note Any SOC trigger received while the MCADC module is converting will
be lost. Conversions are started when an SOC trigger is received while the
module is sampling all active channels.

270

Microchip Motor Control ADC

ADC Input Selection Mode

The ADCHS0 and ADCHS123 registers are used to configure which analog
input channels are selected as the positive and negative input selections for
CH0, and CH1, CH2, and CH3, respectively. The figures below show the two
registers:

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

CH0NACH0SB<4:0>CH0NB CH0SA<4:0>

ADCHS0 Register Configuration [2]

7 6 5 4 3 2 1 015 14 13 12 11 10 9 8

CH123SBCH123NB<1:0> CH123NA<1:0> CH123SA

ADCHS123 Register Configuration [2]

In the MCADC module, each channel can be configured to operate in fixed
input selection mode which uses only MUXA, or in alternate input selection
mode where both MUXA and MUXB are used. The table below summarizes
the effect of the control bits on the analog input selection for each channel.

When operated in fixed input selection mode, chosen by setting the ALTS bit
in the ADCON2 register to zero, only MUXA and the associated control bits
are used to select the positive and negative analog inputs for each channel.
When operated as a 12-bit module, only CH0 is sampled.
When operated in alternate input selection mode, chosen by setting the ALTS
bit in the ADCON2 register to 1, both MUXA and MUXB are used to select
the positive and negative analog inputs for each channel. Again, when oper-
ated as a 12-bit module, only CH0 is sampled. In this mode the ADC com-
pletes one sweep using the MUXA selection and uses the MUXB selection in

271

8 Microchip dsPIC33F Peripheral Models

the next sweep. In the next sweep MUXA is used again. This switch between
MUXA and MUXB continues while the ADC is operated in this mode. The
figure below shows the operation of a 2-channel module with alternate input
selection in sequential sampling mode. The interrupt has been configured to
occur after 4 conversions.

2-Channel Sequential Sampling in Alternate Input Selection mode [2]

The MCADC module provides further flexibility by allowing CH0 to be op-
erated in scan mode. The Channel Scanning mode is enabled by setting the
Channel Scan bit (CSCNA) in the ADCON2 register.

2-Channel Sequential Sampling in Alternate Input Selection mode with Chan-
nel Scan enabled [2]

The desired conversion sequence is selected by configuring the appropriate
bits in the channel selection register (AD1CSSL). The conversions are car-
ried out in ascending order. If operated in alternate input selection mode with
channel scan enabled, MUXA software control is ignored for CH0 and the

272

Microchip Motor Control ADC

ADC module converts the first selected analog input. In the next sweep, the
inputs selected by MUXB are measured. In the following sweep the next se-
lected analog input is sampled for CH0. Input selections for CH1, CH2, and
CH3 are unaffected. The figure above shows an example of a 2-channel se-
quential sampling module operated in alternate input selection mode with
channel scanning enabled. AN2 and AN3 have been selected for channel scan-
ning and AN8 has been selected by the MUXB input selector for CH0. An in-
terrupt is generated after 8 conversions.

ADC Interrupt Logic

CHPS SIMSAM SMPI Conversions per
Interrupt

Description

00 x N-1 N 1-Channel mode

01 0 N-1 N 2-Channel, Sequential
Sampling mode

1x 0 N-1 N 4-Channel, Sequential
Sampling mode

01 1 N-1 2 · N 2-Channel, Simultane-
ous Sampling mode

1x 1 N-1 4 · N 4-Channel, Simultane-
ous Sampling mode

The PLECS MCADC module reflects the properties of an actual MCADC mod-
ule without DMA. The ADC module writes the results of the conversions into
the analog-to-digital result buffer as conversions are completed. The SMPI
bits in the ADCON2 register determine the number of conversions for the
MCADC module before an interrupt is generated. The results are written into
the ADC buffer after each conversion is completed. The MCADC module sup-
ports 16 result buffers. Therefore, the maximum number of conversions per
interrupt must not exceed 16.
The number of conversions per ADC interrupt depends on the following pa-
rameters, which can vary from one to 16 conversions per interrupt:
• Number channels selected
• Sequential or Simultaneous Sampling
• Samples Convert Sequences Per Interrupt bits (SMPI) settings

273

8 Microchip dsPIC33F Peripheral Models

The table above summarizes the effect each of these factors has on the num-
ber of conversions per interrupt.

ADC Buffer Fill Mode

When the Buffer Fill Mode bit (BUFM) in the ADCON2 register is set, the 16-
word results buffer is split into two 8-word groups: a lower group (ADC1BUF0
through ADC1BUF7) and an upper group (ADC1BUF8 through ADC1BUFF).
The 8-word buffers alternately receive the conversion results after each ADC
interrupt event. When the BUFM bit is set, each buffer size equals eight.
Therefore, the maximum number of conversions per interrupt must not exceed
8. When the BUFM bit is cleared, the complete 16-word buffer is used for all
conversion sequences.

Summary of PLECS Implementation

The PLECS MCADC module models the major functionality of the actual
MCADC module. Below is a summary of differences of the PLECS MCADC
module compared to the actual MCADC module:

• The PLECS MCADC module models the Microchip MCADC module without
DMA.

• The GP timer triggers (Timer 3 and Timer 5) and the Motor Control PWM
1 and 2 triggers have been lumped together into single Timer and PWM
trigger, respectively.

• ADCS values over 63 in the ADCON3 register will be flagged as an error in
the PLECS MCADC module.

• Only Automatic Sample and Triggered Conversion Sequence mode is sup-
ported by the PLECS MCADC module. Clearing the ASAM bit in the AD-
CON1 register will be flagged as an error.

• The PLECS MCADC module does not require any time for stabilization dur-
ing startup.

• Any SOC trigger received while the MCADC module is converting will be
lost. Conversions are started when an SOC trigger is received while the
module is sampling all active channels.

• The output results are provided according to the numerical format specified
by the FORM bits in the ADCON1 register or as quantized double values.

274

Microchip Motor Control ADC

Reference
1 - Pictures provided with Courtesy of Microchip, Literature Source: Motor

Control PWM Reference Guide, Literature Number DS70187E, February
2007 - Revised September 2012

2 - Pictures provided with Courtesy of Microchip, Literature Source: Motor
Control ADC Reference Guide, Literature Number DS70183D, December
2006 - Revised April 2012

275

8 Microchip dsPIC33F Peripheral Models

276

9

Infineon XMC1xxx Peripheral
Models

Introduction

Microcontrollers (MCUs) for control applications typically contain peripheral
modules such as Analog-to-Digital Converters (ADCs) and pulse width modu-
lators (PWMs). These peripherals play an important role, since they act as the
interface between the digital/analog signals of the control hardware and the
control algorithms running on the processor. State-of-the-art MCUs often in-
clude peripherals with a multitude of advanced features and configurations to
help implement complex sampling and modulation techniques.

When modeling power converters in a circuit simulator such as PLECS, it
is desirable to represent the behavior of the MCU peripherals as accurately
as possible. Basic Sample&Hold blocks and PWM modulators are useful for
higher-level modeling. However, important details with regards to timing and
quantization are lost when attempting to model an ADC with a basic zero-
order hold (ZOH) block. For example, employing an idealized modulator to
generate PWM signals can result in simulation results substantially different
from the real hardware behavior.

Accurate peripheral models are even more important in the context of
Processor-In-the-Loop (PIL) simulations. In this case, it is imperative to uti-
lize peripheral models which are configurable exactly as the real implemen-
tations, i.e. by setting values in peripheral registers. By the same token, the
inputs and outputs of the peripheral models must correspond precisely to the
numerical representation in the embedded code.

The PLECS PIL library includes high-fidelity MCU peripheral models which
work at the register level, and are therefore well-suited for PIL simulations.
Furthermore, certain blocks have a second implementation with a graphical

9 Infineon XMC1xxx Peripheral Models

user interface (GUI) that automatically determines the register configurations
based on text-based parameter selections.

Subsequent sections describe the PLECS peripheral components in detail and
highlight modeling assumptions and limitations. When documenting periph-
eral register settings, the following color coding is used:

1 Grey (dark shading): No effect on the model behavior

2 Green (light shading): Register cell affects the behavior of the model

278

CCU 4 Single Timer Slice (Compare Mode)

CCU 4 Single Timer Slice (Compare Mode)

The PLECS peripheral library provides two blocks for a single timer slice of
the Infineon XMC1xxx Capture/Compare Unit 4 used in compare mode. One
block has a register-based configuration mask and a second block features a
GUI. In both cases, you should distinguish between registers configured in the
parameter mask and inputs to the block. Mask parameters are fixed (static)
during a simulation and correspond to the configurations which the embedded
software uses during the initialization phase. Inputs are dynamically change-
able while the simulation is running. The fixed configuration can be entered
either using a register-based approach or a GUI, while the dynamic values
supplied at the inputs must correspond to raw register values. The figure be-
low shows the block and its parameters for the register-based version.

Register-based Timer slice model for compare mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

279

9 Infineon XMC1xxx Peripheral Models

Model overview

The block presented in this documentation models a single slice of the Infi-
neon XMC1xxx Capture/Compare Unit 4. It is focussed on the compare mode
of the module and therefore implements a subset of the features available on
the hardware relevant for the control of a power converter or a drive system.
Assumptions made during modeling as well as limitations and simplifications
are described in the next sections.

Timer Slice Core Functions

The core timer of the timer slice consists of a 16-bit counter that can be used
either in Edge-aligned or Center-aligned mode. The single shot mode is not
supported. The counter is assumed to run continuously which means that the
start and stop functionality is not part of the model. For simplicity, the com-
plex shadow transfer state machine is omitted. The shadow transfer for com-
pare and period registers is done with the synchronization events as described
below. An immediate update is not supported which majorly increases the effi-
ciency of the model.

The counter time base is defined by a prescaled clock period Ttclk. The period
of this clock depends on the counter clock frequency fccu4 = M_CLK and the
prescaler register CC4yPSC.PSIV, both configurable in the mask, as follows:

Ttclk =
CC4yPSC .PSIV + 1

fccu4

The prescaler control register is shown below.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

PSIV

171819202122232425262728293031

8

0

0

Prescaler Control Register

The PSIV field defines the prescaler used for the counter time base.

• 0000 - fccu4
• 0001 - fccu4/2
• ...

• 1111 - fccu4/32768

280

CCU 4 Single Timer Slice (Compare Mode)

Because the floating prescaler mode is not supported, PVAL = PSIV is always
valid. Therefore the field CC4yTC.FPE needs to stay cleared.

In Edge-aligned mode the counter is always incremented until it matches the
internal period register PR. When it reaches 1, the CC4yST status bit is set to
passive level. With the Counter = CR+ 1 event, it is set to active level.

Edge-aligned mode [1]

Note that the transfer from the shadow register values PRS/CRS to the inter-
nal registers PR/CR is synched to the counter overflow. Related to the model,
this corresponds to the PRS/CRS input terminals being sampled with the in-
stants of the counter overflow.

In Edge-aligned mode the pwm period can be calculated by

Tper = Ttclk · (PR + 1)

and the pwm dutycycle is defined by

DC =
CR

PR + 1

The initial counter value and for center-aligned mode also the initial counter
direction can be set in the component mask.

281

9 Infineon XMC1xxx Peripheral Models

In Center-aligned mode the timer counts up to PR+1, inverts its counting di-
rection and counts to zero, where it starts counting up again. The CC4yST
status bit is set active with the Counter = CR + 1 while counting up. It is set
to passive with the Counter = CR− 1 event while counting down.

Center-aligned mode [1]

The internal registers are updated with the Counter = PR + 1 (period match)
event and/or with the Counter = 0 (one match) event, which depends on the
configuration in the shadow transfer control register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

CSE

171819202122232425262728293031

8

STM0

0

0 IRPCIRCC0IRLCIRDCIRFC

ASPCASCC0ASLCASDCASFC

Shadow Transfer Control Register

The field CC4ySTC.STM only has an influence in Center-aligned mode and
defines the shadow transfer events.

• 00 - Shadow transfer is done in Period Match and One Match
• 01 - Shadow transfer is done only in Period Match (not supported)
• 10 - Shadow transfer is done only in One Match
• 11 - Reserved (not supported)

Note that the period match only setting is not supported by the model due to
internal limitations.

282

CCU 4 Single Timer Slice (Compare Mode)

In Center-aligned mode the pwm period can be calculated by

Tper = Ttclk · (PR + 1) · 2

and the pwm dutycycle is defined by

DC =
CR

PR + 1

The timer counting mode can be set using the slice timer control register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

TCM

171819202122232425262728293031

8

0 TSSMCLSTCMODECMCAPCENDMSTRMSCECCSDITHEDIM

FPETRAPE0TRPSETRPSWEMT EMSMCME0

Slice Timer Control Register

The TCM field defines the counter mode.

• 0 - Edge-aligned mode
• 1 - Center-aligned mode

Note that this counter slice implementation only models the compare behavior
and therefore CC4yTC.CMOD needs to be set to 0. The register fields TRPSE,
TRAPE, EMS, EMT are related to output path functions and are described in
the corresponding section.

283

9 Infineon XMC1xxx Peripheral Models

Timer Slice Input Path

The timer slice has 28 input signals that are used to generate 3 events ap-
plied to control several functions inside the timer kernel. With the input selec-
tor below the user is able to select a specific signal as an event source and to
configure the signal conditions invoking it.

Slice Input Selector Diagram [1]

The input selector for all three events is configured via the two input selector
configuration registers CC4yINS1 and CC4yINS2.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

EV0IS

171819202122232425262728293031

8

EV1IS

EV2IS

00

0

Input Selector Configuration Register 1

The field EVxIS is used to choose an input as the source for the related
event.

• 00 - CCU4x.INyAA
• 01 - CCU4x.INyAB
• 10 - CCU4x.INyAC
• 11 - CCU4x.INyAD

284

CCU 4 Single Timer Slice (Compare Mode)

Note that the timer slice model only has 4 available signals to keep the
amount of input signals in a reasonable limit. EVxIS values higher than 0b11
are not supported.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

EV0EM

171819202122232425262728293031

8

EV0LM0EV1EMEV1LMEV2EMEV2LM

LPF0M0LPF1M0LPF2M

00

0

Input Selector Configuration Register 2

Because the timer kernel provides edge and level sensitive functions, the in-
put selector provides 2 outputs for each event. The field EVxEM defines the
edge type invoking an edge sensitive function.

• 00 - No action
• 01 - Signal active on rising edge
• 10 - Signal active on falling edge
• 11 - Signal active on both edges

The field EVxLM defines the active level for a level sensitive function.

• 0 - Active on high level
• 1 - Active on low level

Note that the low pass filtering is not implemented in the model and therefore
all LPFxM fields have no influence on the event generation.

285

9 Infineon XMC1xxx Peripheral Models

Slice Connection Matrix

The timer kernel provides user configured functions which can have an influ-
ence on the pwm output path. The figure below shows all available functions.

Slice Connection Matrix Diagram [1]

The coloring specifies if the function is level or edge controlled. The timer slice
model supports the Override, Modulation and TRAP1 functions. The connec-
tion between the events and the functions is done via the CC4yCMC register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

OFS
171819202122232425262728293031

8

0

STRTSENDSCAP0SCAP1SGATESUDSLDSCNTS

TSMOSTCE

Connection Matrix Control Register

286

CCU 4 Single Timer Slice (Compare Mode)

The bit OFS selects the events used for the override function.

• 0 - Override functionality disabled
• 1 - Status Bit Override Trigger connected to Event 1; Status bit override

value connected to Event 2.

The bit TS connects the Trap function.

• 0 - Trap function disabled
• 1 - Trap function connected to Event 2

Note that the CC4yTC.TRAPE bit needs to be set to enable the trap function.

The field MOS selects the event connected to the modulation function.

• 00 - Modulation function deactivated
• 01 - Modulation function connected to Event 0
• 10 - Modulation function connected to Event 1
• 11 - Modulation function connected to Event 2

Timer Slice Output Path

The output path of the timer slice module generates a status and an output
signal and is shown in the figure below.

PWM Output Path [1]

287

9 Infineon XMC1xxx Peripheral Models

The timer slice model implements the active/passive rules, the external over-
ride function as well as the external modulation and trap state control. The
multi-channel mode control is not supported. The external modulation and
trap state control behavior can be configured with the CC4yTC register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

TCM

171819202122232425262728293031

8

0 TSSMCLSTCMODECMCAPCENDMSTRMSCECCSDITHEDIM

FPETRAPE0TRPSETRPSWEMT EMSMCME0

Slice Timer Control Register

The bit TRAPE enables the Trap function.

• 0 - Trap function has no effect on the output
• 1 - Trap function affects the output

The bit TRAPSE enables a synchronous exit from trap state.

• 0 - Exiting from TRAP state is not synchronized with the PWM signal
• 1 - Exiting from TRAP state is synchronized with the PWM signal

Note that an exit of the trap state via software is not supported and therefore
the bit CC4yTC.TRPSW needs to stay cleared.

The bit EMS enables a synchronization of the modulation function with the
pwm period.

• 0 - External Modulation function is not synchronized with the PWM signal
• 1 - External Modulation function is synchronized with the PWM signal

The bit EMT controls the type of the external modulation.

• 0 - External Modulation function is clearing the ST bit
• 1 - External Modulation function is gating the outputs

For more detailed information about the different functions and their behavior
please refer to [1].

The CC4yPSL input defines the passive level of the output signals. It can be
updated immediately during the simulation. The initial ST value can be set in
the component mask.

288

CCU 4 Single Timer Slice (Compare Mode)

Timer Slice Advanced Functions

The hardware module provides additional features like pwm dithering, timer
concatenation or an external access to the counting direction. Because those
features typically are not used in a simulation of a power converter or a drive
control system, they are not reflected in the model.

Timer Slice Interrupt generation

The timer slice block models the interrupt feature of the hardware module.
The interrupt status bits of the CC4yINTS register can be accessed via the
CC4yINTS output which is arranged as follows:
{PMUS, OMDS, CMUS, CMDS, E0AS, E1AS, E2AS}.
The CC4yINTE register can be applied to activate the different interrupt
pulses by writing a 1 to the corresponding field.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

PME

171819202122232425262728293031

8

0E2AE E1AE E0AE OMECMUECMDE

0

0

Slice Timer Interrupt Enable Control Register

Timer Slice Flag Signals

The timer slice model provides access to a FLAGS component signal that pro-
vides access to the following internal signals.
• Counter Value
• CRS Hit Event
• PRS Hit Event
• Zero Hit Event
• Counter Direction
• Status Bit Override Trigger
• Status Bit Override Level
• Trap Status
• Modulation Status
Those signals can be used to further analyze the timer and event behavior of
the module.

289

9 Infineon XMC1xxx Peripheral Models

CCU 8 Single Timer Slice (Compare Mode)

The PLECS peripheral library provides two blocks for a single timer slice of
the Infineon XMC1xxx Capture/Compare Unit 8 used in compare mode. One
block has a register-based configuration mask and a second block features a
GUI. In both cases, you should distinguish between registers configured in the
parameter mask and inputs to the block. Mask parameters are fixed (static)
during a simulation and correspond to the configurations which the embedded
software uses during the initialization phase. Inputs are dynamically change-
able while the simulation is running. The fixed configuration can be entered
either using a register-based approach or a GUI, while the dynamic values
supplied at the inputs must correspond to raw register values. The figure be-
low shows the block and its parameters for the register-based version.

Register-based Timer slice model for compare mode

As depicted above, the block can be configured directly using the registers of
the hardware module, making it possible to exactly mirror the configuration
applied to the target. Also as shown, either hexadecimal, decimal or binary
representation can be used to enter the configuration.

290

CCU 8 Single Timer Slice (Compare Mode)

Model overview

The block presented in this documentation models a single slice of the Infi-
neon XMC1xxx Capture/Compare Unit 8. It is focussed on the compare mode
of the module and therefore implements a subset of the features available on
the hardware relevant for the control of a power converter or a drive system.
Assumptions made during modeling as well as limitations and simplifications
are described in the next sections.

Timer Slice Core Functions

The core timer of the timer slice consists of a 16-bit counter that can be used
either in Edge-aligned or Center-aligned mode. The single shot mode is not
supported. The counter is assumed to run continuously which means that the
start and stop functionality is not part of the model. For simplicity, the com-
plex shadow transfer state machine is omitted. The shadow transfer for com-
pare and period registers is done with the synchronization events as described
below. An immediate update is not supported which majorly increases the effi-
ciency of the model.

The counter time base is defined by a prescaled clock period Ttclk. The period
of this clock depends on the counter clock frequency fccu8 = M_CLK and the
prescaler register CC8yPSC.PSIV, both configurable in the mask, as follows:

Ttclk =
CC8yPSC .PSIV + 1

fccu8

The prescaler control register is shown below.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

PSIV

171819202122232425262728293031

8

0

0

Prescaler Control Register

The PSIV field defines the prescaler used for the counter time base.

• 0000 - fccu8
• 0001 - fccu8/2
• ...

• 1111 - fccu8/32768

291

9 Infineon XMC1xxx Peripheral Models

Because the floating prescaler mode is not supported, PVAL = PSIV is always
valid. Therefore the field CC8TC.FPE needs to stay cleared.

In Edge-aligned mode the counter is always incremented until it matches the
internal period register PR.

Edge-aligned mode [2]

Note that the transfer from the shadow register values PRS/CRS to the inter-
nal registers PR/CR is synched to the counter overflow. Related to the model,
this corresponds to the PRS/CRS input terminals beeing sampled with the
instants of the counter overflow.

In Edge-aligned mode the pwm period can be calculated by

Tper = Ttclk · (PR + 1)

and the pwm dutycycle is defined by

DC =
CR

PR + 1

The initial counter value can be set in the component mask.

292

CCU 8 Single Timer Slice (Compare Mode)

In Center-aligned mode the timer counts up to PR+1, inverts its counting di-
rection and counts to zero, where it starts counting up again.

Center-aligned mode [2]

The internal registers are updated with the Counter = PR + 1 (period match)
event and/or with the Counter = 0 (one match) event, which depends on the
configuration in the shadow transfer control register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

CSE

171819202122232425262728293031

8

STM0

0

0 IRPCIRCC0IRLCIRDCIRFC

ASPCASCC0ASLCASDCASFC

Shadow Transfer Control Register

The field CC8ySTC.STM only has an influence in Center-aligned mode and
defines the shadow transfer events.

• 00 - Shadow transfer is done in Period Match and One Match
• 01 - Shadow transfer is done only in Period Match (not supported)
• 10 - Shadow transfer is done only in One Match
• 11 - Reserved (not supported)

Note that the period match only setting is not supported by the model due to
internal limitations.

293

9 Infineon XMC1xxx Peripheral Models

In Center-aligned mode the pwm period can be calculated by

Tper = Ttclk · (PR + 1) · 2

and the pwm dutycycle is defined by

DC =
CR

PR + 1

The initial counter value and the initial counter direction can be set in the
component mask. The timer counting mode can be configured via the slice
timer control register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

TCM

171819202122232425262728293031

8

0 TSSMCLSTCMODECMCAPCENDMSTRMSCECCSDITHEDIM

FPETRAPE0TRPSETRPSWEMT EMSMCME10 TRAPE1TRAPE2TRAPE3MCME2EMESTOS

Slice Timer Control Register

The TCM field defines the counter mode.

• 0 - Edge-aligned mode
• 1 - Center-aligned mode

Note that this counter slice implementation only models the compare behav-
ior and therefore CC8yTC.CMOD needs to be set to 0. The register fields
TRAPEx, TRPSE, EMS, EMT, EME and STOS are related to output path
functions and are described in the corresponding section.

294

CCU 8 Single Timer Slice (Compare Mode)

Timer Slice Compare Modes and ST generation

Each timer slice of the CCU8 unit has two compare channels which both gen-
erate a complementary set of status bits.

Slice Compare Channel Diagram [2]

Each channel further contains a dead time generator which is applied to pre-
vent short circuiting in power electronic devices. The output path shown on
the right enables a configurable mapping of the status bits to the outputs
Outy0 - Outy3 and adds additional output control functions.
The compare channels can be used for symmetric and asymmetric pwm gener-
ation configured by the register field CC8yCHC.ASE. The logic applied for the
status bit generation in the different modes is summarized in the table below.

Event/Mode Edge Sym. Edge Asym. Center Sym. Center Asym.

Set ST1 CR = CR1S CR = CR1S CR = CR1S
CDIR = 0

CR = CR1S
CDIR = 0

Clear ST1 CR = PRS CR = CR2S CR = CR1S
CDIR = 1

CR = CR2S
CDIR = 1

Set ST2 CR = CR2S CR = CR2S CR = CR2S
CDIR = 0

CR = CR2S
CDIR = 0

Clear ST2 CR = PRS CR = PRS CR = CR2S
CDIR = 1

CR = CR2S
CDIR = 1

Note that a status change is always delayed by one counter clock cycle period.
In asymmetrical edge-aligned mode ST1 stays always 0 if CR2S < CR1S.

295

9 Infineon XMC1xxx Peripheral Models

Timer Slice Dead Time Generator

The timer slice has a dead time generator for every compare channel. This
module is used to delay the switching edges of a complementary output signal
to prevent short circuits in a power stage. The figure below shows a dead time
generation for compare channel 1 in asymmetric, edge-aligned mode.

Timer Slice Dead Time Generation [2]

Note that the positive edge of ST1 is delayed by a time DT1R while the pos-
itive edge of the inverted status bit is delayed by the time DT1F. The dead
time generation is configured via the CC8y.DTC and CC8y.DCxR registers.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

DTE1

171819202122232425262728293031

8

0

0

DTE2DCEN1DCEN2DCEN3DCEN4DTCC

Slice Dead Time Control Register

The deadtime module of a compare channel needs to be enabled with the reg-
ister cells DTEx. Further its possible to separately enable/disable the dead
time generation for each single channel. For example, the dead time gen-
eration of the ST1 channel is activated by setting the bit DCEN1. The bit
DCEN2 activates the dead time for the inverted ST1 channel.

296

CCU 8 Single Timer Slice (Compare Mode)

The register field DTCC is used to configure the clock frequency for the inter-
nal dead time counters.

• 00 - fdtg_clk = ftclk

• 01 - fdtg_clk = ftclk/2

• 10 - fdtg_clk = ftclk/4

• 11 - fdtg_clk = ftclk/8

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16171819202122232425262728293031

8

0

DTxRDTxF

Slice Dead Time Value Register

The field DTxR defines the delay for the positive edge of the STx signal. The
field DTxF defines the delay for the positive edge of the inverted STx signal.

The dead time applied to the positive edge of the non-inverted ST1 i.e. can be
calculated with

Tdead_ST1 =
CC8yDC1R.DT1R

fdtg_clk

297

9 Infineon XMC1xxx Peripheral Models

Timer Slice Input Path

The timer slice has 28 input signals that are used to generate 3 events ap-
plied to control several functions inside the timer kernel or the output path.
With the input selector below the user is able to select a specific signal as an
event source and to configure the signal conditions invoking it.

Slice Input Selector Diagram [2]

The input selector for all three events is configured via the two input selector
configuration registers CC8yINS1 and CC8yINS2.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

EV0IS

171819202122232425262728293031

8

EV1IS

EV2IS

00

0

Input Selector Configuration Register 1

The field EVxIS is used to choose an input as the source for the related
event.

• 00 - CCU8x.INyAA
• 01 - CCU8x.INyAB
• 10 - CCU8x.INyAC
• 11 - CCU8x.INyAD

298

CCU 8 Single Timer Slice (Compare Mode)

Note that the timer slice model only has 4 available signals to keep the
amount of input signals in a reasonable limit. EVxIS values higher than 0b11
are not supported.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

EV0EM

171819202122232425262728293031

8

EV0LM0EV1EMEV1LMEV2EMEV2LM

LPF0M0LPF1M0LPF2M

00

0

Input Selector Configuration Register 2

Because the timer kernel provides edge and level sensitive functions, the in-
put selector provides 2 outputs for each event. The field EVxEM defines the
edge type invoking an edge sensitive function.

• 00 - No action
• 01 - Signal active on rising edge
• 10 - Signal active on falling edge
• 11 - Signal active on both edges

The field EVxLM defines the active level for a level sensitive function.

• 0 - Active on high level
• 1 - Active on low level

Note that the low pass filtering is not implemented in the model and therefore
all LPFxM fields have no influence on the event generation.

299

9 Infineon XMC1xxx Peripheral Models

Slice Connection Matrix

The timer kernel provides user configured functions which can have an influ-
ence on the pwm output path. The figure below shows all available functions.

Slice Connection Matrix Diagram [2]

The coloring specifies if the function is level or edge controlled. The timer slice
model supports the Override, Modulation and TRAP1 functions. The connec-
tion between the events and the functions is done via the CC8yCMC register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

OFS
171819202122232425262728293031

8

0

STRTSENDSCAP0SCAP1SGATESUDSLDSCNTS

TSMOSTCE

Connection Matrix Control Register

300

CCU 8 Single Timer Slice (Compare Mode)

The bit OFS selects the events used for the override function.

• 0 - Override functionality disabled
• 1 - Status Bit Override Trigger connected to Event 1; Status bit override

value connected to Event 2.

The bit TS connects the Trap function.

• 0 - Trap function disabled
• 1 - Trap function connected to Event 2

Note that the CC8yTC.TRAPE bit needs to be set to enable the trap function.

The field MOS selects the event connected to the modulation function.

• 00 - Modulation function deactivated
• 01 - Modulation function connected to Event 0
• 10 - Modulation function connected to Event 1
• 11 - Modulation function connected to Event 2

301

9 Infineon XMC1xxx Peripheral Models

Timer Slice Output Path

The Set/Clear control of the timer slice module generates 2 pairs of comple-
mentary status bits. Those bits can selectively be forwarded to 7 available out-
puts of the timer slice output path shown below.

PWM Output Path [2]

The output path model implements the external status bit override option as
well as the external modulation and trap state control features of the hard-

302

CCU 8 Single Timer Slice (Compare Mode)

ware peripheral. The multi-channel mode control is not supported. The out-
put and status output control blocks implement a selective connection of the
different status bits to the output channels. Further its possible to define the
passive/active level for each output channel separately.

The external modulation and trap state features as well as the state output
control is configured with the CC8yTC register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

TCM

171819202122232425262728293031

8

0 TSSMCLSTCMODECMCAPCENDMSTRMSCECCSDITHEDIM

FPETRAPE0TRPSETRPSWEMT EMSMCME10 TRAPE1TRAPE2TRAPE3MCME2EMESTOS

Slice Timer Control Register

The bit TRAPEx enables the Trap function for output channel x.

• 0 - Trap function has no effect on the output
• 1 - Trap function affects the output

The bit TRAPSE enables a synchronous exit from trap state.

• 0 - Exiting from TRAP state is not synchronized with the PWM signal
• 1 - Exiting from TRAP state is synchronized with the PWM signal

Note that an exit of the trap state via software is not supported and therefore
the bit CC8yTC.TRPSW needs to stay cleared.

The bit EMS enables a synchronization of the modulation function with the
pwm period.

• 0 - External Modulation function is not synchronized with the PWM signal
• 1 - External Modulation function is synchronized with the PWM signal

The bit EMT controls the type of the external modulation.

• 0 - External Modulation function is clearing the ST bit
• 1 - External Modulation function is gating the outputs

The field EME defines which compare channels are affected by the external
modulation.

• 00 - External Modulation does not affect any channel
• 01 - External Modulation only applied on channel 1
• 10 - External Modulation only applied on channel 2
• 11 - External Modulation applied on both channels

303

9 Infineon XMC1xxx Peripheral Models

For more detailed information about the different functions and their behavior
please refer to [2].

The field STOS configures to which channel the output CCU8x.STy is
mapped.

• 00 - CC8yST1 forward to CCU8x.STy
• 01 - CC8yST2 forward to CCU8x.STy
• 10 - CC8yST1 AND CC8yST2 forward to CCU8x.STy
• 11 - CC8yST1 OR CC8yST2 forward to CCU8x.STy

Please note that the outputs CCU8x.STA, CCU8x.STB and CCU8x.STy di-
rectly represent the state of the flip-flops and therefore do not contain dead
time insertion.

Each output control path can freely select from the four status bits. This is
configured by the CC8yCHC register.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

ASE

171819202122232425262728293031

8

0 OCS4

0 0 0 0OCS1OCS2OCS3

Channel Control Register

The field OCS1 defines the status bit used as the source for
CCU8x.OUTy0.

• 00 - CC8yST1 signal path is connected to the CCU8x.OUTy0
• 01 - Inverted CC8yST1 signal path is connected to the CCU8x.OUTy0
• 10 - CC8yST2 signal path is connected to the CCU8x.OUTy0
• 11 - Inverted CC8yST2 signal path is connected to the CCU8x.OUTy0

The field OCS2 defines the status bit used as the source for
CCU8x.OUTy1.

• 00 - Inverted CC8yST1 signal path is connected to the CCU8x.OUTy1
• 01 - CC8yST1 signal path is connected to the CCU8x.OUTy1
• 10 - Inverted CC8yST2 signal path is connected to the CCU8x.OUTy1
• 11 - CC8yST2 signal path is connected to the CCU8x.OUTy1

The field OCS3 defines the status bit used as the source for
CCU8x.OUTy2.

• 00 - CC8yST2 signal path is connected to the CCU8x.OUTy2
• 01 - Inverted CC8yST2 signal path is connected to the CCU8x.OUTy2

304

CCU 8 Single Timer Slice (Compare Mode)

• 10 - CC8yST1 signal path is connected to the CCU8x.OUTy2
• 11 - Inverted CC8yST1 signal path is connected to the CCU8x.OUTy2

The field OCS4 defines the status bit used as the source for
CCU8x.OUTy3.

• 00 - Inverted CC8yST2 signal path is connected to the CCU8x.OUTy3
• 01 - CC8yST2 signal path is connected to the CCU8x.OUTy3
• 10 - Inverted CC8yST1 signal path is connected to the CCU8x.OUTy3
• 11 - CC8yST1 signal path is connected to the CCU8x.OUTy3

Please note that all four fields have a different resulting connection for the
same setting.

The CC8yPSL input defines the passive level of the output signals.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

PSL11

171819202122232425262728293031

8

0

0 PSL12PSL21PSL22

Passive Level Config Register

If a bit in the register is set, the corresponding outputs passive level is active
low. The input is updated immediately during the simulation. The initial STx
values can be set in the component mask.

Timer Slice Advanced Functions

The hardware module provides additional features like pwm dithering, timer
concatenation or an external access to the counting direction. Because those
features typically are not used in a simulation of a power converter or a drive
control system, they are not reflected in the model.

305

9 Infineon XMC1xxx Peripheral Models

Timer Slice Interrupt generation

The timer slice block models the interrupt feature of the hardware module.
The interrupt status bits of the CC8yINTS register can be accessed via the
CC8yINTS output which is arranged as follows:

{PMUS, OMDS, CMU1S, CMD1S, CMU2S, CMD2S, E0AS, E1AS, E2AS}.

The CC8yINTE register can be applied to activate the different interrupt
pulses by writing a 1 to the corresponding field.

7 6 5 4 3 2 1 015 14 13 12 11 10 9

16

PME

171819202122232425262728293031

8

0E2AE E1AE E0AE OMECMU1ECMD1E

0

0 CMD2E CMU2E

Slice Timer Interrupt Enable Control Register

Timer Slice Flag Signals

The timer slice model provides access to a FLAGS component signal that pro-
vides access to the following internal signals.

• Counter Value
• CR1S Hit Event
• CR2S Hit Event
• PRS Hit Event
• Zero Hit Event
• Counter Direction
• Status Bit Override Trigger
• Status Bit Override Level
• Trap Status
• Modulation Status

Those signals can be used to further analyze the timer and event behavior of
the module.

306

CCU 8 Single Timer Slice (Compare Mode)

Reference
1 - Literature Source: Infineon Reference Manual CCU4 [v2.3]

2 - Literature Source: Infineon Reference Manual CCU8 [v2.3]

307

9 Infineon XMC1xxx Peripheral Models

308

10

Components by Category

This chapter lists the blocks of the PIL library by category.

Peripheral Blocks Infineon XMC1000

Infineon XMC1000 CCU4
Slice Compare Mode GUI

Provide a CCU4 timer slice model for pwm genera-
tion with graphical user interface configuration

Infineon XMC1000 CCU4
Slice Compare Mode REG

Provide a CCU4 timer slice model for pwm genera-
tion with register based configuration

Infineon XMC1000 CCU8
Slice Compare Mode GUI

Provide a CCU8 timer slice model for pwm genera-
tion with graphical user interface configuration

Infineon XMC1000 CCU8
Slice Compare Mode REG

Provide a CCU8 timer slice model for pwm genera-
tion with register based configuration

Peripheral Blocks TI C2000

TI C2000 ADC Type 2 GUI Provide an ADC module model with graphical user
interface configuration

TI C2000 ADC Type 2 REG Provide an ADC module model with register based
configuration

TI C2000 ADC Type 3 GUI Provide an ADC module model with graphical user
interface configuration

TI C2000 ADC Type 3 REG Provide an ADC module model with register based
configuration

10 Components by Category

TI C2000 ADC Type 3 Simpli-
fied

Provide a simplified ADC module with single se-
quential or simultaneous sampling

TI C2000 ADC Type 4 GUI Provide an ADC module model with graphical user
interface configuration

TI C2000 ADC Type 4 REG Provide an ADC module model with register based
configuration

TI C2000 eCAP Type 0
APWM GUI

Provide a model of an eCAP module operate in
APWM mode with graphical user interface configu-
ration

TI C2000 eCAP Type 0 CAP
GUI

Provide a model of an eCAP module operate in
capture mode with graphical user interface config-
uration

TI C2000 eCAP Type 0 CAP
REG

Provide a model of an eCAP module operate in
capture mode with register based configuration

TI C2000 ePWM Type 1
Configurator

Provide a helper block for generation of AQCTLx
and AQCSFRC registers

TI C2000 ePWM Type 1 GUI Provide an ePWM module model with graphical
user interface configuration

TI C2000 ePWM Type 1 REG Provide an ePWM module model with register
based configuration

TI C2000 ePWM Type 4
Configurator

Provide a helper block for generation of AQCTLx,
AQCTLx2, and AQCSFRC registers

TI C2000 ePWM Type 4 GUI Provide an ePWM module model with graphical
user interface configuration

TI C2000 ePWM Type 4 REG Provide an ePWM module model with register
based configuration

TI C2000 eQEP Type 0 GUI Provide an eQEP module model with graphical
user interface configuration

TI C2000 eQEP Type 0 REG Provide an eQEP module model with register
based configuration

Peripheral Blocks STM32 F0

310

Peripheral Blocks STM32 F3

STM32 F0 ADC GUI Provide an ADC module model with graphical user
interface configuration

STM32 F0 ADC REG Provide an ADC module model with register based
configuration

STM32 F0 Timer Output
Configurator

Provide a helper block for generation of OcxM and
CCER registers

STM32 F0 Timer Output GUI Provide a timer module model for pwm generation
with graphical user interface configuration

STM32 F0 Timer Output REG Provide a timer module model for pwm generation
with register based configuration

Peripheral Blocks STM32 F1

STM32 F1 ADC GUI Provide an ADC module model with graphical user
interface configuration

STM32 F1 ADC REG Provide an ADC module model with register based
configuration

STM32 F1 Timer Output
Configurator

Provide a helper block for generation of OcxM and
CCER registers

STM32 F1 Timer Output GUI Provide a timer module model for pwm generation
with graphical user interface configuration

STM32 F1 Timer Output REG Provide a timer module model for pwm generation
with register based configuration

Peripheral Blocks STM32 F3

STM32 F3 ADC GUI Provide an ADC module model with graphical user
interface configuration

STM32 F3 ADC REG Provide an ADC module model with register based
configuration

STM32 F3 Timer Output
Configurator

Provide a helper block for generation of OcxM and
CCER registers

311

10 Components by Category

STM32 F3 Timer Output GUI Provide a timer module model for pwm generation
with graphical user interface configuration

STM32 F3 Timer Output REG Provide a timer module model for pwm generation
with register based configuration

Peripheral Blocks STM32 F2/F4

STM32 F2/F4 ADC GUI Provide an ADC module model with graphical user
interface configuration

STM32 F2/F4 ADC REG Provide an ADC module model with register based
configuration

STM32 F2/F4 Timer Output
Configurator

Provide a helper block for generation of OcxM and
CCER registers

STM32 F2/F4 Timer Output
GUI

Provide a timer module model for pwm generation
with graphical user interface configuration

STM32 F2/F4 Timer Output
REG

Provide a timer module model for pwm generation
with register based configuration

Peripheral Blocks Microchip dsPIC33F

MC dsPIC33F MCADC GUI Provide a motor control ADC module model with
graphical user interface configuration

MC dsPIC33F MCADC REG Provide a motor control ADC module model with
register based configuration

MC dsPIC33F MCPWM GUI Provide a motor control pwm generation with
graphical user interface configuration

MC dsPIC33F MCPWM REG Provide a motor control pwm generation with
register based configuration

MC dsPIC33F MCPWMx GUI Provide a motor control pwm generation with
graphical user interface configuration for a single
pwm module

312

11

Component Reference

This chapter lists the contents of the Processor in the Loop Component library
in alphabetical order.

11 Component Reference

Infineon XMC1000 CCU4 Slice Compare Mode GUI

Purpose High fidelity model of a Infineon CCU4 Timer slice with Graphical User Inter-
face configuration.

Library Processor in the Loop / Peripherals / Infineon XMC1000 / CCU

Description This block efficiently models the behavior of a single Infineon XMC1000 CCU4
timer slice with full timing resolution. The component is focused to the cap-
ture mode. Beneath the typical PWM generation it also supports the external
override, trap and modulation features. With the Graphical User Interface,
the block can simply be configured using combo boxes in the component mask.
Under the hood, the resulting register configuration is forwarded to the reg-
ister based implementation of the Infineon XMC1000 CCU4 timer slice. The
resulting register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “CCU4 Single Timer Slice (Com-
pare Mode)” (on page 279).

Parameters
General

MCLK [Hz] (see page 280)
The base clock of the CCU4 defined in Hz.

CC4yPSC (see page 280)
Defines a clock prescaler.

CC4yTC.TCM (see page 280)
Defines the counter mode.

CC4yTC.TRAPE (see page 287)
Enables trap functionality.

CC4yTC.TRAPSE (see page 287)
Defines trap release behavior.

CC4yTC.EMS (see page 287)
Defines the modulation synchronization behavior.

CC4yTC.EMT (see page 287)
Defines the modulation behavior.

CC4ySTC.STM (see page 280)
Defines the shadow transfer events in center aligned mode.

314

Infineon XMC1000 CCU4 Slice Compare Mode GUI

Initial Counter (see page 280)
Counter initialization.

Initial Direction (see page 280)
Initial direction in up-down-count mode.

Initial State (see page 287)
Initial output state for ST.

Input Selection

CC4yINS1.EVxIS (see page 284)
Specifies input source for event x.

CC4yINS2.EVxEM (see page 284)
Specifies edges used as trigger for event x.

CC4yINS2.EVxLM (see page 284)
Specifies level used for event x.

Connection Matrix

CC4yCMC.OFS (see page 286)
Enables and connects override functionality.

CC4yCMC.TS (see page 286)
Enables and connects trap functionality.

CC4yCMC.MOS (see page 286)
Connects modulation functionality to an event.

Interrupt Enable

CC4yINTE.PME (see page 289)
Enables interrupt for period match event.

CC4yINTE.OME (see page 289)
Enables interrupt for one match event.

CC4yINTE.CMUE (see page 289)
Enables interrupt for compare match event while upcounting.

CC4yINTE.CMDE (see page 289)
Enables interrupt for compare match event while downcounting.

CC4yINTE.ExAE (see page 289)
Enables interrupt for event x detection.

315

11 Component Reference

Probe Signals CC4yPRS
Period Register.

CC4yCRS
Compare Register.

CC4yPSL
Passive Level Register status.

CC4x.INyAA
AA Input Signal status.

CC4x.INyAB
AB Input Signal status.

CC4x.INyAC
AC Input Signal status.

CC4x.INyAD
AD Input Signal status.

CC4xSTy
Status bit.

CC4xOUTy
Output status.

CC4yINTS
Interrupt Status Register status.

CC4yPSC
Prescaler Register status.

CC4yINS1
Input Selector Register 1 status.

CC4yINS2
Input Selector Register 2 status.

CC4yINTE
Interrupt Enable Register status.

CC4yCMC
Connection Matrix Control Register status.

CC4yTC
Slice Timer Control Register status.

CC4ySTC
Shadow Transfer Control Register status.

FLAGS
Flags for further system analysis (see page 289).

316

Infineon XMC1000 CCU4 Slice Compare Mode REG

Infineon XMC1000 CCU4 Slice Compare Mode REG

Purpose High fidelity model of a Infineon CCU4 Timer slice with register based config-
uration.

Library Processor in the Loop / Peripherals / Infineon XMC1000 / CCU

Description This block efficiently models the behavior of a single Infineon XMC1000 CCU4
timer slice with full timing resolution. The component is focused to the cap-
ture mode. Beneath the typical PWM generation it also supports the external
override, trap and modulation features. The block is configured using regis-
ter values which closely emulates the hardware implementation. The registers
can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF) represen-
tation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “CCU4 Single Timer Slice (Com-
pare Mode)” (on page 279).

Parameters MCLK [Hz] (see page 280)
The base clock of the CCU4 defined in Hz.

CC4yPSC (see page 280)
Defines a clock prescaler.

CC4yTC (see page 287)
Slice Timer Control Register.

CC4yINS1 (see page 284)
Input Selector Register 1.

CC4yINS2 (see page 284)
Input Selector Register 2.

CC4yCMC (see page 286)
Connection Matrix Control Register.

CC4yINTE (see page 289)
Interrupt Enable Register.

CC4ySTC (see page 280)
Shadow Transfer Control Register.

Initial Counter (see page 280)
Counter initialization.

Initial Direction (see page 280)
Initial direction in up-down-count mode.

317

11 Component Reference

Initial State (see page 287)
Initial output state for ST.

Probe Signals CC4yPRS
Period Register.

CC4yCRS
Compare Register.

CC4yPSL
Passive Level Register status.

CC4x.INyAA
AA Input Signal status.

CC4x.INyAB
AB Input Signal status.

CC4x.INyAC
AC Input Signal status.

CC4x.INyAD
AD Input Signal status.

CC4xSTy
Status bit.

CC4xOUTy
Output status.

CC4yINTS
Interrupt Status Register status.

CC4yPSC
Prescaler Register status.

CC4yINS1
Input Selector Register 1 status.

CC4yINS2
Input Selector Register 2 status.

CC4yINTE
Interrupt Enable Register status.

CC4yCMC
Connection Matrix Control Register status.

CC4yTC
Slice Timer Control Register status.

318

Infineon XMC1000 CCU4 Slice Compare Mode REG

CC4ySTC
Shadow Transfer Control Register status.

FLAGS
Flags for further system analysis (see page 289).

319

11 Component Reference

Infineon XMC1000 CCU8 Slice Compare Mode GUI

Purpose High fidelity model of a Infineon CCU8 Timer slice with Graphical User Inter-
face configuration.

Library Processor in the Loop / Peripherals / Infineon XMC1000 / CCU

Description This block efficiently models the behavior of a single Infineon XMC1000 CCU8
timer slice with full timing resolution. The component is focused to the cap-
ture mode. Beneath the typical PWM generation it also supports the external
override, trap and modulation features. With the Graphical User Interface,
the block can simply be configured using combo boxes in the component mask.
Under the hood, the resulting register configuration is forwarded to the reg-
ister based implementation of the Infineon XMC1000 CCU8 timer slice. The
resulting register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “CCU8 Single Timer Slice (Com-
pare Mode)” (on page 290).

Parameters
General

MCLK [Hz] (see page 291)
The base clock of the CCU8 defined in Hz.

CC8yPSC (see page 291)
Defines a clock prescaler.

CC8yTC.TCM (see page 291)
Defines the counter mode.

CC8yTC.TRAPEx (see page 302)
Enables trap functionality for output channel x.

CC8yTC.TRAPSE (see page 302)
Defines trap release behavior.

CC8yTC.EMS (see page 302)
Defines the modulation synchronization behavior.

CC8yTC.EMT (see page 302)
Defines the modulation behavior.

CC8yTC.EME (see page 302)
Configures compare channels affected by the modulation feature.

320

Infineon XMC1000 CCU8 Slice Compare Mode GUI

CC8yTC.STOS (see page 302)
Defines to which channel CC8ySTy is mapped.

CC8ySTC.STM (see page 291)
Defines the shadow transfer events in center aligned mode.

Initial Counter (see page 291)
Counter initialization.

Initial Direction (see page 291)
Initial direction in up-down-count mode.

Initial STx State (see page 302)
Initial STx state.

Input Selection

CC8yINS1.EVxIS (see page 298)
Specifies input source for event x.

CC8yINS2.EVxEM (see page 298)
Specifies edges used as trigger for event x.

CC8yINS2.EVxLM (see page 298)
Specifies level used for event x.

Connection Matrix

CC8yCMC.OFS (see page 300)
Enables and connects override functionality.

CC8yCMC.TS (see page 300)
Enables and connects trap functionality.

CC8yCMC.MOS (see page 300)
Connects modulation functionality to an event.

Channel Control

CC8yCHC.ASE (see page 291)
Defines status bit generation mode.

CC8yCHC.OCSx (see page 302)
Define status bit to output x mapping.

321

11 Component Reference

Dead Time

CC8yDTC.DTEx (see page 296)
Enables deadtime feature for compare channel x.

CC8yDTC.DCENx (see page 296)
Enables deadtime feature for related status bit.

CC8yDTC.DTCC (see page 296)
Defines clock prescaling for deadtime counters.

CC8yDTC.DTxR (see page 296)
Defines delay for positive edge of STx.

CC8yDTC.DTxF (see page 296)
Defines delay for positive edge of inverted STx.

Interrupt Enable

CC8yINTE.PME (see page 306)
Enables interrupt for period match event.

CC8yINTE.OME (see page 306)
Enables interrupt for one match event.

CC8yINTE.CMU1E (see page 306)
Enables interrupt for compare match 1 event while upcounting.

CC8yINTE.CMD1E (see page 306)
Enables interrupt for compare match 1 event while downcounting.

CC8yINTE.CMU2E (see page 306)
Enables interrupt for compare match 2 event while upcounting.

CC8yINTE.CMD2E (see page 306)
Enables interrupt for compare match 2 event while downcounting.

CC8yINTE.ExAE (see page 306)
Enables interrupt for event x detection.

Probe Signals CC8yPRS
Period Register.

CC8yCR1S
Compare Register.

CC8yCR2S
Compare Register.

322

Infineon XMC1000 CCU8 Slice Compare Mode GUI

CC8yPSL
Passive Level Register status.

CC8x.INyAA
AA Input Signal status.

CC8x.INyAB
AB Input Signal status.

CC8x.INyAC
AC Input Signal status.

CC8x.INyAD
AD Input Signal status.

CC8xSTy
Status bit output y.

CC8xSTA
Status bit output A.

CC8xSTB
Status bit output B.

CC8xOUT0
Output status 0.

CC8xOUT1
Output status 1.

CC8xOUT2
Output status 2.

CC8xOUT3
Output status 3.

CC8yINTS
Interrupt Status Register status.

CC8yPSC
Prescaler Register status.

CC8yINS1
Input Selector Register 1 status.

CC8yINS2
Input Selector Register 2 status.

CC8yINTE
Interrupt Enable Register status.

323

11 Component Reference

CC8yCMC
Connection Matrix Control Register status.

CC8yTC
Slice Timer Control Register status.

CC8ySTC
Shadow Transfer Control Register status.

CC8yCHC
Channel Control Register status.

CC8yDTC
Dead Time Control Register status.

CC8yDCxR
Channel x Dead Time Counter Values status.

FLAGS
Flags for further system analysis (see page 306).

324

Infineon XMC1000 CCU8 Slice Compare Mode REG

Infineon XMC1000 CCU8 Slice Compare Mode REG

Purpose High fidelity model of a Infineon CCU8 Timer slice with register based config-
uration.

Library Processor in the Loop / Peripherals / Infineon XMC1000 / CCU

Description This block efficiently models the behavior of a single Infineon XMC1000 CCU8
timer slice with full timing resolution. The component is focused to the cap-
ture mode. Beneath the typical PWM generation it also supports the external
override, trap and modulation features. The block is configured using regis-
ter values which closely emulates the hardware implementation. The registers
can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF) represen-
tation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “CCU8 Single Timer Slice (Com-
pare Mode)” (on page 290).

Parameters MCLK [Hz] (see page 291)
The base clock of the CCU8 defined in Hz.

CC8yPSC (see page 291)
Defines a clock prescaler.

CC8yTC (see page 302)
Slice Timer Control Register.

CC8yINS1 (see page 298)
Input Selector Register 1.

CC8yINS2 (see page 298)
Input Selector Register 2.

CC8yCMC (see page 300)
Connection Matrix Control Register.

CC8yINTE (see page 306)
Interrupt Enable Register.

CC8ySTC (see page 291)
Shadow Transfer Control Register.

CC8yCHC (see page 302)
Shadow Transfer Control Register.

CC8yDTC (see page 296)
Dead Time Control Register.

325

11 Component Reference

CC8yDCxR (see page 296)
Channel x Dead Time Counter Values Register.

Initial Counter (see page 291)
Counter initialization.

Initial Direction (see page 291)
Initial direction in up-down-count mode.

Initial STx State (see page 302)
Initial STx state.

Probe Signals CC8yPRS
Period Register.

CC8yCR1S
Compare Register.

CC8yCR2S
Compare Register.

CC8yPSL
Passive Level Register status.

CC8x.INyAA
AA Input Signal status.

CC8x.INyAB
AB Input Signal status.

CC8x.INyAC
AC Input Signal status.

CC8x.INyAD
AD Input Signal status.

CC8xSTy
Status bit output y.

CC8xSTA
Status bit output A.

CC8xSTB
Status bit output B.

CC8xOUT0
Output status 0.

CC8xOUT1
Output status 1.

326

Infineon XMC1000 CCU8 Slice Compare Mode REG

CC8xOUT2
Output status 2.

CC8xOUT3
Output status 3.

CC8yINTS
Interrupt Status Register status.

CC8yPSC
Prescaler Register status.

CC8yINS1
Input Selector Register 1 status.

CC8yINS2
Input Selector Register 2 status.

CC8yINTE
Interrupt Enable Register status.

CC8yCMC
Connection Matrix Control Register status.

CC8yTC
Slice Timer Control Register status.

CC8ySTC
Shadow Transfer Control Register status.

CC8yCHC
Channel Control Register status.

CC8yDTC
Dead Time Control Register status.

CC8yDCxR
Channel x Dead Time Counter Values status.

FLAGS
Flags for further system analysis (see page 306).

327

11 Component Reference

TI C2000 ADC Type 2 GUI

Purpose High fidelity model of TI’s C2000 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 2 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the TI Type 2 ADC module. The resulting
register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 2” (on page 74).

Parameters
ADC General

HSPCLK [Hz] (see page 76)
The system clock of the processor defined in Hz.

ADCTRL3.ADCCLKPS (see page 76)
Register cell defining a clock prescaler.

ADCTRL1.CPS (see page 76)
Register cell defining a clock prescaler.

Vref [VREFLO, VREFH] (see page 75)
Specification of reference voltage in mask.

ADCTRL1.ACQ_PS (see page 76)
Specification the width of the ADC sampling window.

Output Mode (see page 76)
Defines representation of conversion results.

Sequencer x Reset (see page 78)
Determines reset of Sequencer x state-pointer either internally after an
EOS event or externally through the RST_SEQx input.

328

TI C2000 ADC Type 2 GUI

ADCTRL

ADCTRL1.SEQ_CASC (see page 78)
Selects operation of ADC in Dual or Cascaded sequencing mode.

ADCTRL2.ePWM_SOCy_SEQx (see page 80)
Enables the start-of-conversion of SEQx by a ePWM_SOCy trigger.

ADCTRL2.INT_MOD_SEQx (see page 80)
Selects the generation of an ADC interrupt at every EOS or every other
EOS for SEQx.

ADCTRL2.INT_ENA_SEQx (see page 80)
Enables the generation of an ADC interrupt for SEQx.

ADCTRL2.ePWM_SOCB_SEQ (see page 80)
Enables the start-of-conversion of SEQ by a ePWM_SOCB trigger.

ADCTRL3.SMODE_SEL (see page 80)
Selects the operation of the ADC in simultaneous or sequential sampling
mode.

ADCCHSELSEQx

CONVnn (see page 78)
Selects input channel converted by the ADC.

Probe Signals Pending SEQx Trigger
Pending trigger for SEQx.

SOC Flag
Start of conversion flag for ADC.

EOS Flag for SEQx
Generates an end-of-sequence signal for SEQx.

ADCCTLx
ADC Control registers resulting from mask settings.

ADCMAXCONV
Maximum ADC conversions resulting from MAX_CONV1 and
MAX_CONV2 inputs.

ADCCHSELSEQx
ADC Channel select resulting from mask settings.

329

11 Component Reference

TI C2000 ADC Type 2 REG

Purpose High fidelity model of TI’s C2000 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 2 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 2” (on page 74).

Parameters HSPCLK [Hz] (see page 76)
The system clock of the processor defined in Hz.

Vref [VREFLO, VREFH] (see page 76)
Specification of reference voltage in mask.

ADCTRLx (see page 78)
ADC Control register x.

ADCCHSELSEQx (see page 78)
ADC Channel select register x.

Output Mode (see page 76)
Defines representation of conversion results.

Sequencer x Reset (see page 78)
Determines reset of Sequencer x state-pointer either internally after an
EOS event or externally through the RST_SEQx input.

Probe Signals Pending SEQx Trigger
Pending trigger for SEQx.

SOC Flag
Start of conversion flag for ADC.

330

TI C2000 ADC Type 2 REG

EOS Flag for SEQx
Generates an end-of-sequence signal for SEQx.

ADCCTLx
ADC Control registers resulting from mask settings.

ADCMAXCONV
Maximum ADC conversions resulting from MAX_CONV1 and
MAX_CONV2 inputs.

ADCCHSELSEQx
ADC Channel select resulting from mask settings.

331

11 Component Reference

TI C2000 ADC Type 3 GUI

Purpose High fidelity model of TI’s C2000 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 3 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the TI Type 3 ADC module. The resulting
register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 3” (on page 83).

Parameters
ADC General

System Clock [Hz] (see page 85)
The system clock of the processor defined in Hz.

ADCCTL2.CLKDIV4EN (see page 85)
Register cell defining a clock prescaler.

ADCCTL2.CLKDIV2EN (see page 85)
Register cell defining a clock prescaler.

ADCCTL1.ADCREFSEL (see page 85)
Register cell choosing the reference voltage.

External Reference [LO,HI] (see page 85)
Specification of external reference voltage in mask.

ADCCTL1.INTPULSEPOS (see page 90)
Defines position of EOC and interrupt flags.

332

TI C2000 ADC Type 3 GUI

ADCCTL1.ADCNONOVERLAP (see page 85)
Allows/Inhibits overlap of conversion and sampling.

Output Mode (see page 85)
Defines representation of conversion results.

ADC INTSELxNy

INTSELxNy.INTxE (see page 90)
Enables interrupt generation for INTx.

INTSELxNy.INTxSEL (see page 90)
Defines trigger (EOC flag) for INTx.

ADCSOCx/y

ADCSOCxCTL.TRIGSEL (see page 86)
Defines trigger source for SOCx.

ADCINTSOCSEL1.SOCx (see page 90)
Defines SOCx trigger to be an interrupt. Overwrites TRIGSEL selection if
not chosen to NO ADCINT.

ADCSOCxCTL.CHSEL (see page 86)
Selects input channel converted by SOCx.

ADCSOCxCTL.ACQPS (see page 86)
Defines length of sampling window for SOCx.

ADCSAMPLEMODE.SIMULENx (see page 89)
Defines sample mode for SOCx/SOCx+1 pair.

Probe Signals ADCCTLx
ADC Control registers resulting from mask settings.

ADCSAMPLEMODE
Sample mode control register resulting from mask settings.

ADCSOCxCTL
ADC SOC control registers resulting from mask settings.

INTSELxNy
ADC interrupt module control registers resulting from mask settings.

ADCINTSOCSELx
ADC SOC interrupt trigger control registers resulting from mask settings.

333

11 Component Reference

TI C2000 ADC Type 3 REG

Purpose High fidelity model of TI’s C2000 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 3 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 3” (on page 83).

Parameters System Clock [Hz] (see page 85)
The system clock of the processor defined in Hz.

ADCCTL1 (see page 85)
ADC Control register 1.

ADCCTL2 (see page 85)
ADC Control register 2.

External Reference [LO,HI] (see page 85)
Specification of external reference voltage in mask.

ADCSAMPLEMODE (see page 89)
Sample mode control registers for SOC pairs.

ADCSOCxCTL (see page 86)
ADC SOC control register for SOCx.

INTSELxNy (see page 90)
ADC interrupt module control registers.

334

TI C2000 ADC Type 3 REG

ADCINTSOCSELx (see page 90)
ADC SOC interrupt trigger control registers.

Output Mode (see page 85)
Defines representation of conversion results.

Probe Signals ADCCTLx
ADC control registers.

ADCSAMPLEMODE
Sample mode Control register.

ADCSOCxCTL
ADC SOC control registers.

INTSELxNy
ADC interrupt module control registers.

ADCINTSOCSELx
ADC SOC interrupt trigger control registers.

335

11 Component Reference

TI C2000 ADC Type 3 Simplified

Purpose Simplified model of TI’s C2000 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block provides a simplified model of the TI Type 3 ADC module retaining
the timing behavior of the hardware ADC. The component supports either sin-
gle or simultaneous measurements with configurable sample window length
and conversion voltage reference. Due to simulation efficiency reasons, the
conversion results are calculated as the average of the input values at the be-
gin and the end of the sampling window. The component further provides an
interrupt pulse on the output which indicates an available conversion result.

In single sampling mode, a pulse on the trigger input invokes a single conver-
sion of ADCIN1. The ADCINT pulse indicates that the conversion result is
available at ADCRESULT1.

In simultaneous sampling mode, ADCIN1 and ADCIN2 are sampled simulta-
neously. The ADCINT pulse indicates that the conversion result is available
at ADCRESULT1 and ADCRESULT2.

Parameters ADC clock [Hz]
The ADC time base clock defined in Hz.

Sampling Mode
Defines sampling mode of ADC.

Sample Window length
Defines length of sampling window based on the adc clock period.

Reference Selection
Defines reference voltage range used for conversion.

External Reference [LO,HI]
Specification of external reference voltage in mask.

Output Mode
Defines representation of conversion results.

Probe Signals ADC_Trig
Trigger input of simplified ADC.

ADCINx
Measurement inputs of simplified ADC.

336

TI C2000 ADC Type 3 Simplified

ADCRESULTx
Conversion results of simplified ADC.

ADCINT
Conversion result available pulse of simplified ADC.

337

11 Component Reference

TI C2000 ADC Type 4 GUI

Purpose High fidelity model of TI’s C2000 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 4 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the TI Type 4 ADC module. The resulting
register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 4” (on page 92).

Parameters
ADC General

System Clock [Hz] (see page 94)
The system clock of the processor defined in Hz.

ADCCTL2.PRESCALE (see page 94)
Register cell defining the ADC clock based on the System Clock.

ADCCTL2.SIGNALMODE (see page 94)
Register cell defining the mode and resolution used for conversion.

338

TI C2000 ADC Type 4 GUI

Voltage Reference [LO,HI] (see page 99)
Specification of external reference voltage in mask.

Output Mode (see page 94)
Defines representation of conversion results.

ADC INTSELxNy

ADCINTSELxNy.INTxE (see page 100)
Enables interrupt generation for INTx.

ADCINTSELxNy.INTxSEL (see page 100)
Defines trigger (EOC flag) for INTx.

ADCSOCx/y

ADCSOCxCTL.TRIGSEL (see page 96)
Defines trigger source for SOCx.

ADCINTSOCSEL1.SOCx (see page 100)
Defines SOCx trigger to be an interrupt. Overwrites TRIGSEL selection if
not chosen to NO ADCINT.

ADCSOCxCTL.CHSEL (see page 96)
Selects input channel converted by SOCx.

ADCSOCxCTL.ACQPS (see page 96)
Defines length of sampling window for SOCx.

PPBx

ADCPPBxCONFIG.CONFIG (see page 102)
Defines associated SOC.

ADCPPBxCONFIG.TWOSCOMPEN (see page 102)
Enables inversion of error calculation.

ADCEVTSEL.PPBxZERO (see page 102)
Enables event generation for ADCPPBxRESULT zero crossing detection.

ADCEVTSEL.PPBxTRIPLO (see page 102)
Enables event generation for ADCPPBxRESULT low level limit detection.

ADCEVTSEL.PPBxTRIPHI (see page 102)
Enables event generation for ADCPPBxRESULT high level limit detection.

339

11 Component Reference

ADCEVTINTSEL.PPBxZERO (see page 102)
Enables interrupt for ADCPPBxRESULT zero crossing detection.

ADCEVTINTSEL.PPBxTRIPLO (see page 102)
Enables interrupt for ADCPPBxRESULT low level limit detection.

ADCEVTINTSEL.PPBxTRIPHI (see page 102)
Enables interrupt for ADCPPBxRESULT high level limit detection.

ADCPPBxOFFSET (see page 102)
Defines ADCRESULTx offset.

ADCPPBxTRIPHI (see page 102)
Defines ADCPPBxRESULT high level limit.

ADCPPBxTRIPLO (see page 102)
Defines ADCPPBxRESULT low level limit.

Probe Signals ADCCTLx
ADC Control registers resulting from mask settings.

ADCSOCxCTL
ADC SOC control registers resulting from mask settings.

ADCINTSELxNy
ADC interrupt module control registers resulting from mask settings.

ADCINTSOCSELx
ADC SOC interrupt trigger control registers resulting from mask settings.

ADCEVTSEL
Configuration register for PPBx event generation.

ADCEVTINTSEL
Configuration register for PPBx interrupt generation.

ADCPPBxCONFIG
Configuration register for PPBx.

ADCPPBxOFFCAL
ADCPPBx offset register.

ADCPPBxTRIPHI
ADCPPBx high level trip register.

ADCPPBxTRIPLO
ADCPPBx low level trip register.

340

TI C2000 ADC Type 4 REG

TI C2000 ADC Type 4 REG

Purpose High fidelity model of TI’s C2000 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / TI C2000 / ADC

Description This block models the TI Type 4 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)
Type 4” (on page 92).

Parameters
ADC

System Clock [Hz] (see page 94)
The system clock of the processor defined in Hz.

ADCCTL1 (see page 100)
ADC Control register 1.

ADCCTL2 (see page 94)
ADC Control register 2.

341

11 Component Reference

Voltage Reference [LO,HI] (see page 99)
Specification of external reference voltage in mask.

ADCSOCxCTL (see page 96)
ADC SOC control register for SOCx.

ADCINTSELxNy (see page 100)
ADC interrupt module control registers.

ADCINTSOCSELx (see page 100)
ADC SOC interrupt trigger control registers.

Output Mode (see page 94)
Defines representation of conversion results.

PPB

ADCEVTSEL (see page 102)
Configuration register for PPBx event generation.

ADCEVTINTSEL (see page 102)
Configuration register for PPBx interrupt generation.

ADCPPBxCONFIG (see page 102)
Configuration register for PPBx.

ADCPPBxOFFCAL (see page 102)
ADCPPBx offset register.

ADCPPBxTRIPHI (see page 102)
ADCPPBx high level trip register.

ADCPPBxTRIPLO (see page 102)
ADCPPBx low level trip register.

Probe Signals ADCCTLx
ADC control registers.

ADCSOCxCTL
ADC SOC control registers.

ADCINTSELxNy
ADC interrupt module control registers.

ADCINTSOCSELx
ADC SOC interrupt trigger control registers.

ADCEVTSEL
Configuration register for PPBx event generation.

342

TI C2000 ADC Type 4 REG

ADCEVTINTSEL
Configuration register for PPBx interrupt generation.

ADCPPBxCONFIG
Configuration register for PPBx.

ADCPPBxOFFCAL
ADCPPBx offset register.

ADCPPBxTRIPHI
ADCPPBx high level trip register.

ADCPPBxTRIPLO
ADCPPBx low level trip register.

343

11 Component Reference

TI C2000 eCAP Type 0 APWM GUI

Purpose High fidelity model of TI’s C2000 eCAP module operated in APWM mode with
Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / TI C2000 / eCAP

Description This block efficiently models the behavior of a single TI Type 0 eCAP module
operated in APWM mode. With the Graphical User Interface, the block can
simply be configured using combo boxes in the component mask.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Capture (eCAP) Module
Type 0” (on page 107).

Parameters System Clock [Hz] (see page 110)
The system clock of the processor defined in Hz.

Counter Sampling Frequency [Hz] (see page 111)
Frequency at which the counter value is updated.

ECCTL2.APWMPOL (see page 110)
Select output of APWM module to be active high or low.

ECEINT.CTR=CMP (see page 110)
Enable interrupt generation at compare event.

ECEINT.CTR=PRD (see page 110)
Enable generation of interrupt at period event.

ECEINT.CTROVF (see page 110)
Enable generation of interrupt at counter overflow event.

Probe Signals CAPx register
Capture x register.

eCAP Counter
Counter value sampled at user specified frequency

344

TI C2000 eCAP Type 0 CAP GUI

TI C2000 eCAP Type 0 CAP GUI

Purpose High fidelity model of TI’s C2000 eCAP module operated in Capture mode
with Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / TI C2000 / eCAP

Description This block efficiently models the behavior of a single TI Type 0 eCAP module
operated in capture mode. With the Graphical User Interface, the block can
simply be configured using combo boxes in the component mask. Under the
hood, the resulting register configuration is forwarded to the register based
implementation of the TI Type 0 eCAP module operated in capture mode. The
resulting register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Capture (eCAP) Module
Type 0” (on page 107).

Parameters
eCAP General

System Clock [Hz] (see page 108)
The system clock of the processor defined in Hz.

Counter Sampling Frequency [Hz] (see page 111)
Frequency at which the counter value is updated.

ECCTL1

ECCTL1.CAPxPOL (see page 109)
Select CAPx capture events on rising or falling edge.

ECCTL1.CTRSTx (see page 109)
Enable counter reset after CAPx capture event.

ECCTL1.CAPLDEN (see page 109)
Enable loading of counter value into capture registers on capture events.

ECCTL1.PRESCALE (see page 108)
Event prescaler bits to reduce the frequency of the input capture signal.

345

11 Component Reference

ECCTL2

ECCTL2.STOP_WRAP (see page 109)
Select capture event after which counter wrapping occurs.

ECEINT

ECEINT.CEVTx (see page 110)
Enable interrupt generation at capture event x.

ECEINT.CTROVF (see page 110)
Enable generation of interrupt at counter overflow event.

Probe Signals eCAP PSout
Post-scaled ECAPx pin events.

eCAP Counter
Counter value sampled at user specified frequency.

ECCTLx
ECAP control register x.

ECEINT
ECAP interrupt enable register.

346

TI C2000 eCAP Type 0 CAP REG

TI C2000 eCAP Type 0 CAP REG

Purpose High fidelity model of TI’s C2000 eCAP module operated in capture mode with
register based configuration.

Library Processor in the Loop / Peripherals / TI C2000 / eCAP

Description This block efficiently models the behavior of a single TI Type 0 eCAP module
operated in capture mode. The block is configured using register values which
closely emulates the hardware implementation. The registers can be entered
in decimal (15), binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Capture (eCAP) Module
Type 0” (on page 107).

Parameters System Clock [Hz] (see page 108)
The system clock of the processor defined in Hz.

Counter Sampling Frequency [Hz] (see page 111)
Frequency at which the counter value is updated.

ECCTLx (see page 108)
ECAP control register x.

ECEINT (see page 108)
ECAP interrupt enable register.

Probe Signals eCAP PSout
Post-scaled ECAPx pin events.

eCAP Counter
Counter value sampled at user specified frequency.

ECCTLx
ECAP control register x.

ECEINT
ECAP interrupt enable register.

347

11 Component Reference

TI C2000 ePWM Type 1 Configurator

Purpose Helper block for generation of AQCTLx and AQCSFRC registers

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block generates the decimal value for the Action-Qualifier Control Reg-
ister (AQCTLx) and the Action-Qualifier Continuos Software Force Register
(AQCSFRC) based on the configuration of the mask parameters.

Parameters

AQCTLA

Action-Qualifier Output A Control Register Filed Descriptions

AQCTLA.CBD
Action when the TB-counter equals the active CMPB register and the
counter is decrementing.

AQCTLA.CBU
Action when the TB-counter equals the active CMPB register and the
counter is incrementing.

AQCTLA.CAD
Action when the TB-counter equals the active CMPA register and the
counter is decrementing.

AQCTLA.CAU
Action when the TB-counter equals the active CMPA register and the
counter is incrementing.

AQCTLA.PRD
Action when the TB-counter equals the period.

AQCTLA.ZRO
Action when the TB-counter equals zero.

348

TI C2000 ePWM Type 1 Configurator

AQCTLB

Action-Qualifier Output B Control Register Filed Descriptions

AQCTLB.CBD
Action when the TB-counter equals the active CMPB register and the
counter is decrementing.

AQCTLB.CBU
Action when the TB-counter equals the active CMPB register and the
counter is incrementing.

AQCTLB.CAD
Action when the TB-counter equals the active CMPA register and the
counter is decrementing.

AQCTLB.CAU
Action when the TB-counter equals the active CMPA register and the
counter is incrementing.

AQCTLB.PRD
Action when the TB-counter equals the period.

AQCTLB.ZRO
Action when the TB-counter equals zero.

AQSRFC

Action-Qualifier Continuos Software Force Register Field Descriptions

AQSRFC.CSFD
Continuous Software Force on Output B.

AQSRFC.CSFA
Continuous Software Force on Output A.

349

11 Component Reference

TI C2000 ePWM Type 1 GUI

Purpose High fidelity model of TI’s C2000 ePWM module with Graphical User Inter-
face configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block efficiently models the behavior of a single TI Type 1 ePWM mod-
ule with full timing resolution for a variable PWM period. Beneath the typical
PWM generation it also supports the features provided by the Event Trigger
and the Deadband submodule. With the Graphical User Interface, the block
can simply be configured using combo boxes in the component mask. Un-
der the hood, the resulting register configuration is forwarded to the register
based implementation of the TI Type 1 ePWM module. The resulting register
configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Pulse Width Modulator
(ePWM) Type 1” (on page 43).

Parameters
ePWM General

System Clock [Hz] (see page 45)
The system clock of the processor defined in Hz.

TBCTL.PHSDIR (see page 46)
Register cell defining the counter direction after a synch event.

TBCTL.CLKDIV (see page 45)
Register cell defining a clock prescaler.

TBCTL.HSPCLKDIV (see page 45)
Register cell defining a high speed clock prescaler.

TBCTL.SYNCOSEL (see page 46)
Register cell defining SYNCO behavior.

TBCTL.PHSEN (see page 46)
Register cell enabling counter synchronization.

TBCTL.CTRMODE (see page 45)
Register cell for count mode configuration.

CMPCTL.LOADxMODE (see page 48)
Specification of Reload Event for CMPx.

350

TI C2000 ePWM Type 1 GUI

AQSFRC.RLDCSF (see page 49)
Specification of Reload Event for AQCSFRC.

Initial Counter (see page 46)
Counter initialization.

Initial Direction (see page 46)
Initial direction in up-down-count mode.

Initial State (see page 46)
Initial output state for EPWMA and EPWMB.

Event-Trigger module

ETSEL.SOCxEN (see page 53)
Enables pulse generation on EPWMSOCx.

ETSEL.SOCxSEL (see page 53)
Selects event source for Event-Trigger counter increment.

ETSEL.SOCxCNT (see page 53)
Sets initial Event-Trigger counter value.

ETSEL.SOCxPRD (see page 53)
Specifies Event-Trigger counter period.

Dead-Band module

DBCTL.HALFCYCLE (see page 55)
Enables clocking of DB-counter with halfed time-base period.

DBCTL.INMODE (see page 55)
Configures input source to the falling-edge and rising-edge delays.

DBCTL.POLSEL (see page 55)
Specifies polarity inversion of the edge delay outputs.

DBCTL.OUTMODE (see page 55)
Selectively enable or bypass the Dead-Band generation.

DBCTL.DBRED (see page 55)
Dead-Band generator rising-edge delay.

DBCTL.DBFED (see page 55)
Dead-Band generator falling-edge delay.

351

11 Component Reference

Probe Signals CMPx
Compare register.

AQCTLx
Action qualifier configuration.

AQCSFRC
Action qualifier software forcing configuration.

EPWMx
EPWM outputs.

EPWMSOCx
EPWM SOC pulse outputs.

TBPRD
Period of PWM counter.

TBCTL
Time-Base control register resulting from mask settings.

CMPCTL
Compare-Control register resulting from mask settings.

AQSFRC
Action-Qualifier software force register resulting from mask settings.

ETSEL
Event-Trigger selection register resulting from mask settings.

ETPS
Event-Trigger prescale register resulting from mask settings.

DBCTL
Dead-Band control register resulting from mask settings.

DBRED
Dead-Band generator rising-edge delay register resulting from mask set-
tings.

DBRED
Dead-Band generator falling-edge delay register resulting from mask set-
tings.

SYNCI
Synchronization input.

TBPHS
Synchronization value.

SYNCO
Synchronization output.

352

TI C2000 ePWM Type 1 GUI

FLAGS
Counter value, event flags and counting direction.

353

11 Component Reference

TI C2000 ePWM Type 1 REG

Purpose High fidelity model of TI’s C2000 ePWM module with register based configura-
tion.

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block efficiently models the behavior of a single TI Type 1 ePWM module
with full timing resolution for a variable PWM period. Beneath the typical
PWM generation it also supports the features provided by the Event Trigger
and the Deadband submodule. The block is configured using register values
which closely emulates the hardware implementation. The registers can be
entered in decimal (15), binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Pulse Width Modulator
(ePWM) Type 1” (on page 43).

Parameters System Clock [Hz] (see page 45)
The system clock of the processor defined in Hz.

TBPRD (see page 45)
Period value of the internal counter defining the period of the PWM signal.

TBCTL (see page 45)
Time-Base control register.

CMPCTL (see page 48)
Compare control register.

AQSFRC (see page 49)
Action-Qualifier software force register.

ETSEL (see page 53)
Event-Trigger selection register.

ETPS (see page 53)
Event-Trigger prescale register.

DBCTL (see page 55)
Dead-Band control register.

DBRED (see page 55)
Dead-Band generator rising-edge delay register.

DBRED (see page 55)
Dead-Band generator falling-edge delay register.

354

TI C2000 ePWM Type 1 REG

Initial Counter (see page 46)
Counter initialization.

Initial Direction (see page 46)
Initial direction in up-down-count mode.

Initial State (see page 46)
Initial output state for EPWMA and EPWMB.

Probe Signals CMPx
Compare register.

AQCTLx
Action qualifier configuration.

AQCSFRC
Action qualifier software forcing configuration.

EPWMx
EPWM outputs.

EPWMSOCx
EPWM SOC pulse outputs.

TBPRD
Period of PWM counter.

TBCTL
Time-Base control register.

CMPCTL
Compare-Control register.

AQSFRC
Action-Qualifier software force register.

ETSEL
Event-Trigger selection register.

ETPS
Event-Trigger prescale register.

DBCTL
Dead-Band control register.

DBRED
Dead-Band generator rising-edge delay register.

DBRED
Dead-Band generator falling-edge delay register.

355

11 Component Reference

SYNCI
Synchronization input.

TBPHS
Synchronization value.

SYNCO
Synchronization output.

FLAGS
Counter value, event flags and counting direction.

356

TI C2000 ePWM Type 4 Configurator

TI C2000 ePWM Type 4 Configurator

Purpose Helper block for generation of AQCTLx, AQCTLx2, and AQCSFRC registers

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block generates the decimal value for the Action-Qualifier Control Regis-
ter (AQCTLx), Action-Qualifier Control Register 2 (AQCTLx2) and the Action-
Qualifier Continuos Software Force Register (AQCSFRC) based on the configu-
ration of the mask parameters.

Parameters

AQCTLA

Action-Qualifier Output A Control Register Filed Descriptions

AQCTLA.CBD
Action when the TB-counter equals the active CMPB register and the
counter is decrementing.

AQCTLA.CBU
Action when the TB-counter equals the active CMPB register and the
counter is incrementing.

AQCTLA.CAD
Action when the TB-counter equals the active CMPA register and the
counter is decrementing.

AQCTLA.CAU
Action when the TB-counter equals the active CMPA register and the
counter is incrementing.

AQCTLA.PRD
Action when the TB-counter equals the period.

AQCTLA.ZRO
Action when the TB-counter equals zero.

357

11 Component Reference

AQCTLA2

Action-Qualifier Output A Control Register 2 Filed Descriptions

AQCTLA2.T2D
Action when T2 event occurs and the counter is decrementing.

AQCTLA2.T2U
Action when T2 event occurs and the counter is incrementing.

AQCTLA2.T1D
Action when T1 event occurs and the counter is decrementing.

AQCTLA2.T1U
Action when T1 event occurs and the counter is incrementing.

AQCTLB

Action-Qualifier Output B Control Register Filed Descriptions

AQCTLB.CBD
Action when the TB-counter equals the active CMPB register and the
counter is decrementing.

AQCTLB.CBU
Action when the TB-counter equals the active CMPB register and the
counter is incrementing.

AQCTLB.CAD
Action when the TB-counter equals the active CMPA register and the
counter is decrementing.

AQCTLB.CAU
Action when the TB-counter equals the active CMPA register and the
counter is incrementing.

AQCTLB.PRD
Action when the TB-counter equals the period.

AQCTLB.ZRO
Action when the TB-counter equals zero.

358

TI C2000 ePWM Type 4 Configurator

AQCTLB2

Action-Qualifier Output B Control Register 2 Filed Descriptions

AQCTLB2.T2D
Action when T2 event occurs and the counter is decrementing.

AQCTLB2.T2U
Action when T2 event occurs and the counter is incrementing.

AQCTLB2.T1D
Action when T1 event occurs and the counter is decrementing.

AQCTLB2.T1U
Action when T1 event occurs and the counter is incrementing.

AQSRFC

Action-Qualifier Continuos Software Force Register Field Descriptions

AQSRFC.CSFD
Continuous Software Force on Output B.

AQSRFC.CSFA
Continuous Software Force on Output A.

359

11 Component Reference

TI C2000 ePWM Type 4 GUI

Purpose High fidelity model of TI’s C2000 ePWM module with Graphical User Inter-
face configuration.

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block efficiently models the behavior of a single TI Type 4 ePWM mod-
ule with full timing resolution for a variable PWM period. Beneath the typical
PWM generation it also supports the features provided by the Event Trigger
and the Deadband submodule. With the Graphical User Interface, the block
can simply be configured using combo boxes in the component mask. Un-
der the hood, the resulting register configuration is forwarded to the register
based implementation of the TI Type 4 ePWM module. The resulting register
configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Pulse Width Modulator
(ePWM) Type 4” (on page 57).

Parameters
ePWM General

System Clock [Hz] (see page 59)
The system clock of the processor defined in Hz.

EPWMCLK Prescaler (see page 59)
Prescaler to divide down the system clock to generate the EPWM clock.

TBCTL.PHSDIR (see page 60)
Register cell defining the counter direction after a synch event.

TBCTL.CLKDIV (see page 59)
Register cell defining a clock prescaler.

TBCTL.HSPCLKDIV (see page 59)
Register cell defining a high speed clock prescaler.

TBCTL.SYNCOSEL (see page 60)
Register cell defining SYNCO behavior.

360

TI C2000 ePWM Type 4 GUI

TBCTL.PHSEN (see page 60)
Register cell enabling counter synchronization.

TBCTL.CTRMODE (see page 59)
Register cell for count mode configuration.

TBCTL2.PRDLDSYNC (see page 60)
Register cell defining the period reload behavior for synch events.

TBCTL2.SYNCOSELX (see page 60)
Register cell defining SYNCO behavior.

CMPCTL.LOADxMODE (see page 63)
Specification of Reload Event for CMPx.

AQSFRC.RLDCSF (see page 64)
Specification of Reload Event for AQCSFRC.

Initial Counter (see page 60)
Counter initialization.

Initial Direction (see page 60)
Initial direction in up-down-count mode.

Initial State (see page 60)
Initial output state for EPWMA and EPWMB.

Event-Trigger module

ETSEL.SOCxEN (see page 68)
Enables pulse generation on EPWMSOCx.

ETSEL.SOCxSEL (see page 68)
Selects event source for Event-Trigger counter increment.

ETSEL.SOCxSELCMP (see page 68)
Selects CMPA/CMPB or CMPC/CMPD as event source for Event-Trigger
counter increment.

ETPS.SOCxPRD (see page 68)
Specifies Event-Trigger 2-bit counter period.

ETPS.SOCPSSEL (see page 68)
Selects ETPS[SOCxPRD] or ETSOCPS[SOCxPRD2] to determine fre-
quency of events

ETSOCPS.SOCxPRD2 (see page 68)
Specifies Event-Trigger 4-bit counter period.

ETCNTINIT.SOCxINIT (see page 68)
Sets initial Event-Trigger counter value.

361

11 Component Reference

Dead-Band module

DBCTL.HALFCYCLE (see page 71)
Enables clocking of DB-counter with halfed time-base period.

DBCTL.DEDB_MODE (see page 71)
Enables dual edge dead-band mode.

DBCTL.OUTSWAP (see page 71)
Swaps one or both output signals.

DBCTL.LOADFEDMODE (see page 71)
Controls transfer of DBFED shadow to active register.

DBCTL.LOADREDMODE (see page 71)
Controls transfer of DBRED shadow to active register.

DBCTL.INMODE (see page 71)
Configures input source to the falling-edge and rising-edge delays.

DBCTL.POLSEL (see page 71)
Specifies polarity inversion of the edge delay outputs.

DBCTL.OUTMODE (see page 71)
Selectively enable or bypass the Dead-Band generation.

Probe Signals CMPx
Compare register.

Tx
Tx events.

AQCTLx
Action qualifier configuration.

AQCTLx2
Action qualifier configuration.

AQCSFRC
Action qualifier software forcing configuration.

EPWMx
EPWM outputs.

EPWMSOCx
EPWM SOC pulse outputs.

TBPRD
Period of PWM counter.

362

TI C2000 ePWM Type 4 GUI

TBCTL
Time-Base control register resulting from mask settings.

TBCTL2
Time-Base control register 2.

CMPCTL
Compare-Control register resulting from mask settings.

CMPCTL2
Compare-Control register 2 resulting from mask settings.

AQSFRC
Action-Qualifier software force register resulting from mask settings.

ETSEL
Event-Trigger selection register resulting from mask settings.

ETPS
Event-Trigger prescale register resulting from mask settings.

ETCNTINIT
Event-Trigger counter initialization register resulting from mask settings.

ETSOCPS
Event-Trigger SOC prescaler register resulting from mask settings.

DBCTL
Dead-Band control register resulting from mask settings.

DBRED
Dead-Band generator rising-edge delay register.

DBRED
Dead-Band generator falling-edge delay register.

SYNCI
Synchronization input.

TBPHS
Synchronization value.

SYNCO
Synchronization output.

FLAGS
Counter value, event flags and counting direction.

363

11 Component Reference

TI C2000 ePWM Type 4 REG

Purpose High fidelity model of TI’s C2000 ePWM module with register based configura-
tion.

Library Processor in the Loop / Peripherals / TI C2000 / ePWM

Description This block efficiently models the behavior of a single TI Type 4 ePWM module
with full timing resolution for a variable PWM period. Beneath the typical
PWM generation it also supports the features provided by the Event Trigger
and the Deadband submodule. The block is configured using register values
which closely emulates the hardware implementation. The registers can be
entered in decimal (15), binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Pulse Width Modulator
(ePWM) Type 4” (on page 57).

Parameters System Clock [Hz] (see page 59)
The system clock of the processor defined in Hz.

EPWM Prescaler (see page 59)
Prescaler to divide down the system clock to generate the EPWM clock.

TBCTL (see page 59)
Time-Base control register.

TBCTL2 (see page 60)
Time-Base control register 2.

CMPCTL (see page 63)
Compare control register.

CMPCTL (see page 63)
Compare control register 2.

AQSFRC (see page 64)
Action-Qualifier software force register.

364

TI C2000 ePWM Type 4 REG

ETSEL (see page 68)
Event-Trigger selection register.

ETPS (see page 68)
Event-Trigger prescale register.

ETCNTINIT (see page 68)
Event-Trigger counter initialization register.

ETSOCPS (see page 68)
Event-Trigger SOC prescale register.

DBCTL (see page 71)
Dead-Band control register.

Initial Counter (see page 60)
Counter initialization.

Initial Direction (see page 60)
Initial direction in up-down-count mode.

Initial State (see page 60)
Initial output state for EPWMA and EPWMB.

Probe Signals CMPx
Compare register.

AQCTLx
Action qualifier configuration.

AQCTLx2
Action qualifier configuration.

AQCSFRC
Action qualifier software forcing configuration.

EPWMx
EPWM outputs.

EPWMSOCx
EPWM SOC pulse outputs.

TBPRD
Period of PWM counter.

TBCTL
Time-Base control register.

TBCTL2
Time-Base control register 2.

365

11 Component Reference

CMPCTL
Compare-Control register.

CMPCTL2
Compare-Control register 2.

AQSFRC
Action-Qualifier software force register.

ETSEL
Event-Trigger selection register.

ETPS
Event-Trigger prescale register.

ETCNTINIT
Event-Trigger counter initialization register.

ETSOCPS
Event-Trigger SOC prescaler register.

DBCTL
Dead-Band control register.

DBRED
Dead-Band generator rising-edge delay register.

DBRED
Dead-Band generator falling-edge delay register.

SYNCI
Synchronization input.

TBPHS
Synchronization value.

SYNCO
Synchronization output.

FLAGS
Counter value, event flags and counting direction.

366

TI C2000 eQEP Type 0 GUI

TI C2000 eQEP Type 0 GUI

Purpose High fidelity model of TI’s C2000 eQEP module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / eQEP

Description

QPOSCNT
QEPSTS.QDF

PCSOUTQPOSCMP
QFLG.INT

QCPRD
QPOSLAT

QEPSTS.FIMF

This block efficiently models the behavior of a TI Type 0 eQEP module. With
the Graphical User Interface, the block can simply be configured using combo
boxes in the component mask. Under the hood, the resulting register config-
uration is forwarded to the register based implementation of the TI Type 0
eQEP module. The resulting register configuration further is accessible via the
probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Quadrature Encoder
Pulse (eQEP) Type 0” (on page 112).

Parameters
ePWM General

System Clock [Hz] (see page 112)
The system clock of the processor defined in Hz.

Quantization Interval (see page 112)
Maps the counter to an integer multiple of the quantization interval:
counter = q ∗ round

(
counter

q

)
. The interval refers to the quantum q used

in the mapping function.

Quantization Step Detection (see page 112)
When set to on, a zero-crossing signal is enabled to help the solver detect
the precise instants when the counter increments or decrements by the
quantum q. Enabling step detection will influence the solver step size and
for fast rotating shafts can severely reduce the simulation speed.

When set to off, the quantization will not influence the step size of the
solver.

Number of Slots (see page 112)
Number of slots per revolution of the encoder.

Initial Rotor Angle (see page 112)
The mechanical rotor angle θm in radians.

367

11 Component Reference

QEPI Midpoint Offset (see page 112)
Midpoint offset of the QEPI slot in radians.

QEPI Width (see page 112)
Width of the QEPI slot in radians.

QPOSMAX (see page 112)
eQEP Maximum Position Count register.

QPOSINIT (see page 112)
eQEP Position Counter Initialization register.

Low Speed Threshold [rpm] (see page 119)
Speed in rpm above which the unit position subsystem is disabled.

QDECCTL

QDECCTL.SWAP (see page 114)
Swaps the quadrature clock inputs and reverses the counting direction.

QEPCTL

QEPCTL.UTE (see page 119)
Enable unit timer in edge capture unit.

QEPCTL.SWI (see page 116)
Enable initialization of position counter.

QEPCTL.PCRM (see page 116)
Position counter reset mode.

QPOSCTL

QPOSCTL.PCSPW (see page 119)
Position-compare sync output pulse width.

QPOSCTL.PCE (see page 119)
Position-compare enable/disable.

QPOSCTL.PCPOL (see page 119)
Polarity of sync output.

QPOSCTL.PCLOAD (see page 119)
Position-compare shadow load mode.

368

TI C2000 eQEP Type 0 GUI

QEINT

QEINT.QDC (see page 122)
Quadrature direction change interrupt enable.

QEINT.PCU (see page 122)
Position counter underflow interrupt enable.

QEINT.PCO (see page 122)
Position counter overflow interrupt enable.

QEINT.PCM (see page 122)
Position-compare match interrupt enable.

QEINT.UTO (see page 119)
Unit time out interrupt enable.

Edge Capture Unit

QCAPCTL.UPPS (see page 119)
Unit position event prescaler.

QCAPCTL.CCPS (see page 119)
eQEP capture timer clock prescaler.

QCAPCTL.CEN (see page 119)
eQEP capture enable.

QUPRD (see page 119)
Unit timer period register.

Probe Signals QDECCTL
eQEP decoder control register.

QPOSCMP
eQEP position-compare register.

QEPCTL
eQEP control register.

QPOSCTL
eQEP position-compare control register.

QEINT
eQEP interrupt enable register.

QCAPCTL
eQEP capture control register.

369

11 Component Reference

QEPI
QEPI signal.

QEPSTS.COEF
Counter overflow error flag bit in QEPSTS register.

QEPSTS.UPEVENT
Unit position flag bit in QEPSTS register.

QEPSTS.CDEF
Counter direction error flag bit in QEPSTS register.

QUPRD
Unit timer period register.

QUTMR
Unit timer counter register.

QFLG.UTO
Unit time out event flag.

Unit Position Enabled/Disabled
Flag indicating if the unit position module is enabled or disabled. If the
speed of the encoder is greater than the Low Speed Threshold the unit po-
sition module is disabled.

370

TI C2000 eQEP Type 0 REG

TI C2000 eQEP Type 0 REG

Purpose High fidelity model of TI’s C2000 eQEP module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / TI C2000 / eQEP

Description

QPOSCNT
QEPSTS.QDF

PCSOUTQPOSCMP
QFLG.INT

QCPRD
QPOSLAT

QEPSTS.FIMF

This block efficiently models the behavior of a TI Type 0 eQEP module. The
block is configured using register values which closely emulates the hardware
implementation. The registers can be entered in decimal (15), binary (0b1111)
or hexadecimal (0xF) representation.
For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Enhance Quadrature Encoder
Pulse (eQEP) Type 0” (on page 112).

Parameters System Clock [Hz] (see page 112)
The system clock of the processor defined in Hz.

Quantization Interval (see page 112)
Maps the counter to an integer multiple of the quantization interval:
counter = q ∗ round

(
counter

q

)
. The interval refers to the quantum q used

in the mapping function.
Quantization Step Detection (see page 112)

When set to on, a zero-crossing signal is enabled to help the solver detect
the precise instants when the counter increments or decrements by the
quantum q. Enabling step detection will influence the solver step size and
for fast rotating shafts can severely reduce the simulation speed.
When set to off, the quantization will not influence the step size of the
solver.

Number of Slots (see page 112)
Number of slots per revolution of the encoder.

Initial Rotor Angle (see page 112)
The mechanical rotor angle θm in radians.

QEPI Midpoint Offset (see page 112)
Midpoint offset of the QEPI slot in radians.

QEPI Width (see page 112)
Width of the QEPI slot in radians.

QPOSMAX (see page 112)
eQEP Maximum Position Count register.

371

11 Component Reference

QPOSINIT (see page 112)
eQEP Position Counter Initialization register.

QDECCTL (see page 114)
eQEP decoder control register.

QEPCTL (see page 116)
eQEP control register.

QPOSCTL (see page 119)
eQEP position-compare control register.

QEINT (see page 122)
eQEP interrupt enable register.

QCAPCTL (see page 119)
eQEP capture control register.

QUPRD (see page 119)
Unit timer period register.

Low Speed Threshold [rpm] (see page 119)
Speed in rpm above which the unit position subsystem is disabled.

Probe Signals QDECCTL
eQEP decoder control register.

QPOSCMP
eQEP position-compare register.

QEPCTL
eQEP control register.

QPOSCTL
eQEP position-compare control register.

QEINT
eQEP interrupt enable register.

QCAPCTL
eQEP capture control register.

QEPI
QEPI signal.

QEPSTS.COEF
Counter overflow error flag bit in QEPSTS register.

QEPSTS.UPEVENT
Unit position flag bit in QEPSTS register.

372

TI C2000 eQEP Type 0 REG

QEPSTS.CDEF
Counter direction error flag bit in QEPSTS register.

QUPRD
Unit timer period register.

QUTMR
Unit timer counter register.

QFLG.UTO
Unit time out event flag.

Unit Position Enabled/Disabled
Flag indicating if the unit position module is enabled or disabled. If the
speed of the encoder is greater than the Low Speed Threshold the unit po-
sition module is disabled.

373

11 Component Reference

STM32 F0 ADC GUI

Purpose High fidelity model of STM32 F0 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / STM32 F0 / ADC

Description This block models the STM F0 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the STM F0 ADC module. The resulting reg-
ister configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 148).

Parameters
ADC General

PCLK [Hz] (see page 150)
The clock potentially used as as the adc time base in Hz.

ADC_CFGR2.CKMODE [Hz] (see page 150)
Determines the adc time base.

Reference[LO,HI] (see page 150)
Specification of the reference voltage in mask.

ADC_CFGR1.DISCEN (see page 152)
Enables/disables discontinuous mode for regular channels.

ADC_CFGR1.RES (see page 150)
Defines ADC resolution.

Output Mode (see page 150)
Defines representation of conversion results.

ADC_SMPR.SMP (see page 152)
Defines adc sample window.

ADC_IER.EOCIE (see page 155)
Enables/disables interrupt pulses on EOC_INT.

374

STM32 F0 ADC GUI

ADC_IER.EOSEQIE (see page 155)
Enables/disables interrupt pulses on EOSEQ_INT.

Minimum Trigger Latency (see page 154)
Defines the latency between a trigger and start of the sampling window.

Register Write Latency (see page 154)
Defines the latency between EOC and latch into the register.

ADC Channel Selection

ADC_CHSELR.CHSELx (see page 152)
Defines channel x to be an element of the conversion sequence.

Probe Signals ADC_CFGR1
ADC Control register resulting from mask settings.

ADC_CFGR2
ADC Control register resulting from mask settings.

ADC_SMPR
Sample time control register resulting from mask settings.

ADC_IER
Interrupt enable register resulting from mask settings.

ADC_CHSELR
Channel selection register resulting from mask settings.

375

11 Component Reference

STM32 F0 ADC REG

Purpose High fidelity model of STM32 F0 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / STM32 F0 / ADC

Description This block models the STM32 F0 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 148).

Parameters PCLK [Hz] (see page 150)
The clock potentially used as as the adc time base in Hz.

ADC_CFGR1 (see page 152)
ADC Configuration register 1.

ADC_CFGR2 (see page 152)
ADC Configuration register 2.

ADC_SMPR (see page 152)
ADC sample time control register.

ADC_IER (see page 155)
ADC interrupt enable register.

ADC_CHSELR (see page 152)
ADC channel selection register.

Reference[LO,HI] (see page 150)
Specification of the reference voltage in mask.

Output Mode (see page 150)
Defines representation of conversion results.

Minimum Trigger Latency (see page 154)
Defines the latency between a trigger and start of the sampling window.

Register Write Latency (see page 154)
Defines the latency between EOC and latch into the register.

376

STM32 F0 ADC REG

Probe Signals ADC_CFGR1
ADC Control register resulting from mask settings.

ADC_CFGR2
ADC Control register resulting from mask settings.

ADC_SMPR
Sample time control register resulting from mask settings.

ADC_IER
Interrupt enable register resulting from mask settings.

ADC_CHSELR
Channel selection register resulting from mask settings.

377

11 Component Reference

STM32 F0 Timer Output Configurator

Purpose Helper block for generation of OCxM and CCER registers.

Library Processor in the Loop / Peripherals / STM32 F0 / Timer

Description This block generates the decimal value for the Output Compare mode register
cells (OCxM) and the Capture Compare Enable register (CCER) based on the
configuration of the mask parameters.

Parameters
Output Compare Mode

Register cells for configuration of output channels 1-4
OC1M

Output Compare mode for output channel 1.
OC2M

Output Compare mode for output channel 2.
OC3M

Output Compare mode for output channel 3.
OC4M

Output Compare mode for output channel 4.

Compare Enable Register

Control of output stage and signal polarity
CCxE

Activates output enable circuit for channel x.
CCxNE

Activates output enable circuit for complementary channel x.
CCxP

Controls polarity of channel x.
CCxNP

Controls polarity of complementary channel x.

378

STM32 F0 Timer Output GUI

STM32 F0 Timer Output GUI

Purpose High fidelity model of the STM32 F0 module with focus on output behavior
and Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / STM32 F0 / Timer

Description This block efficiently models the behavior of a STM32 F0 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. With the Graphical User Interface, the block can simply be configured
using combo boxes in the component mask. Under the hood, the resulting reg-
ister configuration is forwarded to the register based implementation of the
STM32 F0 timer module. The resulting register configuration further is acces-
sible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 127).

Parameters
TIM General

Timer Type (see page 128)
Specifies used timer subtype.

CK_PSC [Hz] (see page 128)
Counter clock frequency defined in Hz.

TIM_PSC (see page 128)
A prescaler for the counter time base calculation.

TIM_CR1.CKD (see page 134)
Determines tdts used for dead-time calculation.

TIM_CR1.CMS (see page 128)
Defines counter mode.

TIM_CR1.DIR (see page 128)
Defines counter direction in Edge-aligned mode.

TIM_BDTR.DTG (see page 134)
Configures dead-time for advanced and complementary timer subtypes.

Initial Counter (see page 131)
Counter initialization.

379

11 Component Reference

Initial Direction (see page 131)
Initial counter direction in Center-aligned mode.

TIM INT Enable

Enables Interrupt flag generation on CCxIF and UIF terminals.

TIM_DIER.CCxIE (see page 131)
Enables pulse on CCxIF terminal.

TIM_DIER.UIE (see page 131)
Enables pulse on UIF terminal.

GPIO Mode

Configuration of output level if output enable circuit is inactive.

GPIOM.OCx (see page 147)
Inactive level for channel x.

GPIOM.OCxN (see page 147)
Inactive level for complementary channel x.

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

380

STM32 F0 Timer Output GUI

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

381

11 Component Reference

STM32 F0 Timer Output REG

Purpose High fidelity model of the STM32 F0 module with focus on output behavior
and register based configuration.

Library Processor in the Loop / Peripherals / STM32 F0 / Timer

Description This block efficiently models the behavior of a STM32 F0 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. The block is configured using register values which closely emulates
the hardware implementation. The registers can be entered in decimal (15),
binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 127).

Parameters Timer Type (see page 128)
Specifies used timer subtype.

CK_PSC [Hz] (see page 128)
Counter clock frequency defined in Hz.

TIM_PSC (see page 128)
A prescaler for the counter time base calculation.

TIM_CR1 (see page 128)
Timer control register 1.

TIM_BDTR (see page 134)
Timer dead-time register.

TIM_DIER (see page 131)
Timer interrupt enable register.

GPIO Mode (see page 147)
GPIO Mode configuration register.

Initial Counter (see page 131)
Counter initialization.

Initial Direction (see page 131)
Initial counter direction in Center-aligned mode.

382

STM32 F0 Timer Output REG

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

383

11 Component Reference

STM32 F1 ADC GUI

Purpose High fidelity model of STM32 F1 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / STM32 F1 / ADC

Description This block models the STM F1 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the STM F1 ADC module. The resulting reg-
ister configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 182).

Parameters
ADC General

ADC_CLK [Hz] (see page 184)
The clock used as as the adc time base in Hz.

Reference[LO,HI] (see page 184)
Specification of the reference voltage in mask.

ADC_CR1.DISCNUM (see page 184)
Defines regular channels converted in discontinuous mode.

ADC_CR1.JDISCEN (see page 184)
Enables discontinuous mode for injected channels.

ADC_CR1.DISCEN (see page 184)
Enables/disables discontinuous mode for regular channels.

ADC_CR1.JAUTO (see page 184)
Enables/disables automatic injected group conversion.

ADC_CR1.SCAN (see page 184)
Enables/disables scan mode.

ADC_CR1.JEOCIE (see page 188)
Enables/disables interrupt pulses on JEOC_INT.

384

STM32 F1 ADC GUI

ADC_CR1.EOCIE (see page 188)
Enables/disables interrupt pulses on EOC_INT.

Output Mode (see page 184)
Defines representation of conversion results.

ADC_SMPRx

ADC_SMPRx.SMPy (see page 184)
Defines sampling length for corresponding input.

ADC_SQRx

ADC_SQRx.L (see page 184)
Defines regular group length and dimension of ADC_DR.

ADC_SQRx.SQy (see page 184)
Defines input sampled by regular group element y.

ADC_JSQR

ADC_SQR.JL (see page 184)
Defines injected group length and dimension of ADC_JDR.

ADC_JSQR.JSQy (see page 184)
Defines input sampled by injected group element y.

Probe Signals ADC_CR1
ADC Control register resulting from mask settings.

ADC_SMPRx
Sample time control registers resulting from mask settings.

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

385

11 Component Reference

STM32 F1 ADC REG

Purpose High fidelity model of STM32 F1 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / STM32 F1 / ADC

Description This block models the STM32 F1 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 182).

Parameters ADC_CLK [Hz] (see page 184)
The clock used as as the adc time base in Hz.

Reference[LO,HI] (see page 184)
Specification of the reference voltage in mask.

ADC_CR1 (see page 184)
ADC Control register 1.

ADC_SMPRx (see page 184)
ADC sample time control registers.

ADC_SQRx (see page 184)
ADC regular sequence control registers.

ADC_JSQR (see page 184)
ADC injected sequence control register.

Output Mode (see page 184)
Defines representation of conversion results.

Probe Signals ADC_CR1
ADC Control register resulting from mask settings.

ADC_SMPRx
Sample time control registers resulting from mask settings.

386

STM32 F1 ADC REG

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

387

11 Component Reference

STM32 F1 Timer Output Configurator

Purpose Helper block for generation of OCxM and CCER registers.

Library Processor in the Loop / Peripherals / STM32 F1 / Timer

Description This block generates the decimal value for the Output Compare mode register
cells (OCxM) and the Capture Compare Enable register (CCER) based on the
configuration of the mask parameters.

Parameters
Output Compare Mode

Register cells for configuration of output channels 1-4
OC1M

Output Compare mode for output channel 1.
OC2M

Output Compare mode for output channel 2.
OC3M

Output Compare mode for output channel 3.
OC4M

Output Compare mode for output channel 4.

Compare Enable Register

Control of output stage and signal polarity
CCxE

Activates output enable circuit for channel x.
CCxNE

Activates output enable circuit for complementary channel x.
CCxP

Controls polarity of channel x.
CCxNP

Controls polarity of complementary channel x.

388

STM32 F1 Timer Output GUI

STM32 F1 Timer Output GUI

Purpose High fidelity model of the STM32 F1 module with focus on output behavior
and Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / STM32 F1 / Timer

Description This block efficiently models the behavior of a STM32 F1 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. With the Graphical User Interface, the block can simply be configured
using combo boxes in the component mask. Under the hood, the resulting reg-
ister configuration is forwarded to the register based implementation of the
STM32 F1 timer module. The resulting register configuration further is acces-
sible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 159).

Parameters
TIM General

Timer Type (see page 160)
Specifies used timer subtype.

CK_PSC [Hz] (see page 160)
Counter clock frequency defined in Hz.

TIM_PSC (see page 160)
A prescaler for the counter time base calculation.

TIM_CR1.CKD (see page 166)
Determines tdts used for dead-time calculation.

TIM_CR1.CMS (see page 160)
Defines counter mode.

TIM_CR1.DIR (see page 160)
Defines counter direction in Edge-aligned mode.

TIM_BDTR.DTG (see page 166)
Configures dead-time for advanced and complementary timer subtypes.

Initial Counter (see page 163)
Counter initialization.

389

11 Component Reference

Initial Direction (see page 163)
Initial counter direction in Center-aligned mode.

TIM INT Enable

Enables Interrupt flag generation on CCxIF and UIF terminals.

TIM_DIER.CCxIE (see page 163)
Enables pulse on CCxIF terminal.

TIM_DIER.UIE (see page 163)
Enables pulse on UIF terminal.

GPIO Mode

Configuration of output level if output enable circuit is inactive.

GPIOM.OCx (see page 181)
Inactive level for channel x.

GPIOM.OCxN (see page 181)
Inactive level for complementary channel x.

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

390

STM32 F1 Timer Output GUI

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

391

11 Component Reference

STM32 F1 Timer Output REG

Purpose High fidelity model of the STM32 F1 module with focus on output behavior
and register based configuration.

Library Processor in the Loop / Peripherals / STM32 F1 / Timer

Description This block efficiently models the behavior of a STM32 F1 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. The block is configured using register values which closely emulates
the hardware implementation. The registers can be entered in decimal (15),
binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 159).

Parameters Timer Type (see page 160)
Specifies used timer subtype.

CK_PSC [Hz] (see page 160)
Counter clock frequency defined in Hz.

TIM_PSC (see page 160)
A prescaler for the counter time base calculation.

TIM_CR1 (see page 160)
Timer control register 1.

TIM_BDTR (see page 166)
Timer dead-time register.

TIM_DIER (see page 163)
Timer interrupt enable register.

GPIO Mode (see page 181)
GPIO Mode configuration register.

Initial Counter (see page 163)
Counter initialization.

Initial Direction (see page 163)
Initial counter direction in Center-aligned mode.

392

STM32 F1 Timer Output REG

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

393

11 Component Reference

STM32 F3 ADC GUI

Purpose High fidelity model of STM32 F3 ADC module with Graphical User Interface
configuration.

Library Processor in the Loop / Peripherals / STM32 F3 / ADC

Description This block models the STM F3 ADC module. With the Graphical User Inter-
face, the block can simply be configured using combo boxes in the component
mask. Under the hood, the resulting register configuration is forwarded to the
register based implementation of the STM F3 ADC module. The resulting reg-
ister configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 211).

Parameters
ADC General

ADC_CLK [Hz] (see page 213)
The clock used as the adc time base in Hz.

Reference[LO,HI] (see page 213)
Specification of the reference voltage in mask.

ADC_CFGR.JAUTO (see page 215)
Enables/disables automatic injected group conversion.

ADC_CFGR.JDISCEN (see page 215)
Enables discontinuous mode for injected channels.

ADC_CFGR.DISCNUM (see page 215)
Defines regular channels converted in discontinuous mode.

ADC_CFGR.DISCEN (see page 215)
Enables/disables discontinuous mode for regular channels.

ADC_CFGR.RES (see page 213)
Defines ADC resolution.

ADC_IER.JEOSIE (see page 220)
Enables/disables interrupt pulses on JEOS_INT.

ADC_IER.JEOCIE (see page 220)
Enables/disables interrupt pulses on JEOC_INT.

394

STM32 F3 ADC GUI

ADC_IER.EOSIE (see page 220)
Enables/disables interrupt pulses on EOS_INT.

ADC_IER.EOCIE (see page 220)
Enables/disables interrupt pulses on EOC_INT.

Output Mode (see page 213)
Defines representation of conversion results.

ADC_DIFSEL

ADC_DIFSELx (see page 215)
Defines conversion mode for corresponding input.

ADC_SMPRx

ADC_SMPRx.SMPy (see page 215)
Defines sampling length for corresponding input.

ADC_SQRx

ADC_SQRx.L (see page 215)
Defines regular group length and dimension of ADC_DR.

ADC_SQRx.SQy (see page 215)
Defines input sampled by regular group element y.

ADC_JSQR

ADC_SQR.JL (see page 215)
Defines injected group length and dimension of ADC_JDR.

ADC_JSQR.JSQy (see page 215)
Defines input sampled by injected group element y.

Probe Signals ADC_CFGR
ADC control register resulting from mask settings.

ADC_DIFSEL
ADC mode selection register resulting from mask settings.

ADC_IER
ADC interrupt settings register resulting from mask settings.

395

11 Component Reference

ADC_SMPRx
Sample time control registers resulting from mask settings.

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

396

STM32 F3 ADC REG

STM32 F3 ADC REG

Purpose High fidelity model of STM32 F3 ADC module with register based configura-
tion.

Library Processor in the Loop / Peripherals / STM32 F3 / ADC

Description This block models the STM32 F3 ADC module. The block is configured using
register values which closely emulates the hardware implementation. The reg-
isters can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 211).

Parameters ADC_CLK [Hz] (see page 213)
The clock used as the adc time base in Hz.

Reference[LO,HI] (see page 213)
Specification of the reference voltage in mask.

ADC_CFGR (see page 215)
ADC control register.

ADC_DIFSEL (see page 215)
ADC mode selection register.

ADC_IER (see page 215)
ADC interrupt settings register.

ADC_SMPRx (see page 215)
ADC sample time control registers.

ADC_SQRx (see page 215)
ADC regular sequence control registers.

ADC_JSQR (see page 215)
ADC injected sequence control register.

Output Mode (see page 213)
Defines representation of conversion results.

397

11 Component Reference

Probe Signals ADC_CFGR
ADC control register resulting from mask settings.

ADC_DIFSEL
ADC mode selection register resulting from mask settings.

ADC_IER
ADC interrupt settings register resulting from mask settings.

ADC_SMPRx
Sample time control registers resulting from mask settings.

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

398

STM32 F3 Timer Output Configurator

STM32 F3 Timer Output Configurator

Purpose Helper block for generation of OCxM and CCER registers.

Library Processor in the Loop / Peripherals / STM32 F3 / Timer

Description This block generates the decimal value for the Output Compare mode register
cells (OCxM) and the Capture Compare Enable register (CCER) based on the
configuration of the mask parameters.

Parameters
Output Compare Mode

Register cells for configuration of output channels 1-5

OC1M
Output Compare mode for output channel 1.

OC2M
Output Compare mode for output channel 2.

OC3M
Output Compare mode for output channel 3.

OC4M
Output Compare mode for output channel 4.

OC5M
Output Compare mode for output channel 5.

Compare Enable Register

Control of output stage and signal polarity

CCxE
Activates output enable circuit for channel x.

CCxNE
Activates output enable circuit for complementary channel x.

399

11 Component Reference

CCxP
Controls polarity of channel x.

CCxNP
Controls polarity of complementary channel x.

400

STM32 F3 Timer Output GUI

STM32 F3 Timer Output GUI

Purpose High fidelity model of the STM32 F3 module with focus on output behavior
and Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / STM32 F3 / Timer

Description This block efficiently models the behavior of a STM32 F3 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. With the Graphical User Interface, the block can simply be configured
using combo boxes in the component mask. Under the hood, the resulting reg-
ister configuration is forwarded to the register based implementation of the
STM32 F3 timer module. The resulting register configuration further is acces-
sible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 193).

Parameters
TIM General

Timer Type (see page 194)
Specifies used timer subtype.

CK_PSC [Hz] (see page 194)
Counter clock frequency defined in Hz.

TIM_PSC (see page 194)
A prescaler for the counter time base calculation.

TIM_CR1.CKD (see page 200)
Determines tdts used for dead-time calculation.

TIM_CR1.CMS (see page 194)
Defines counter mode.

TIM_CR1.DIR (see page 194)
Defines counter direction in Edge-aligned mode.

TIM_BDTR.DTG (see page 200)
Configures dead-time for advanced timer subtype.

Initial Counter (see page 197)
Counter initialization.

401

11 Component Reference

Initial Direction (see page 197)
Initial counter direction in Center-aligned mode.

TIM INT Enable

Enables Interrupt flag generation on CCxIF and UIF terminals.

TIM_DIER.CCxIE (see page 197)
Enables pulse on CCxIF terminal.

TIM_DIER.UIE (see page 197)
Enables pulse on UIF terminal.

GPIO Mode

Configuration of output level if output enable circuit is inactive.

GPIOM.OCx (see page 210)
Inactive level for channel x.

GPIOM.OCxN (see page 210)
Inactive level for complementary channel x.

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

402

STM32 F3 Timer Output GUI

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

403

11 Component Reference

STM32 F3 Timer Output REG

Purpose High fidelity model of the STM32 F3 module with focus on output behavior
and register based configuration.

Library Processor in the Loop / Peripherals / STM32 F3 / Timer

Description This block efficiently models the behavior of a STM32 F3 timer module with
full timing resolution for a variable PWM period. This component is focussed
on PWM generation and therefore on the compare/output features of the
timer. The block is configured using register values which closely emulates
the hardware implementation. The registers can be entered in decimal (15),
binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 193).

Parameters Timer Type (see page 194)
Specifies used timer subtype.

CK_PSC [Hz] (see page 194)
Counter clock frequency defined in Hz.

TIM_PSC (see page 194)
A prescaler for the counter time base calculation.

TIM_CR1 (see page 194)
Timer control register 1.

TIM_BDTR (see page 200)
Timer dead-time register.

TIM_DIER (see page 197)
Timer interrupt enable register.

GPIO Mode (see page 210)
GPIO Mode configuration register.

Initial Counter (see page 197)
Counter initialization.

Initial Direction (see page 197)
Initial counter direction in Center-aligned mode.

404

STM32 F3 Timer Output REG

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

405

11 Component Reference

STM32 F2/F4 ADC GUI

Purpose High fidelity model of STM32 F2/F4 ADC module with Graphical User Inter-
face configuration.

Library Processor in the Loop / Peripherals / STM32 F2/F4 / ADC

Description This block models the STM F2/F4 ADC module. With the Graphical User In-
terface, the block can simply be configured using combo boxes in the compo-
nent mask. Under the hood, the resulting register configuration is forwarded
to the register based implementation of the STM F2/F4 ADC module. The re-
sulting register configuration further is accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 240).

Parameters
ADC General

PCLK2 [Hz] (see page 242)
The clock used as the adc time base in Hz.

ADC_CCR.ADCPRE (see page 242)
Register cell defining a clock prescaler.

Reference[LO,HI] (see page 242)
Specification of the reference voltage in mask.

ADC_CR1.RES (see page 242)
Defines ADC resolution.

ADC_CR1.DISCNUM (see page 243)
Defines regular channels converted in discontinuous mode.

ADC_CR1.JDISCEN (see page 243)
Enables discontinuous mode for injected channels.

ADC_CR1.DISCEN (see page 243)
Enables/disables discontinuous mode for regular channels.

ADC_CR1.JAUTO (see page 243)
Enables/disables automatic injected group conversion.

406

STM32 F2/F4 ADC GUI

ADC_CR1.SCAN (see page 243)
Enables/disables scan mode.

ADC_CR1.JEOCIE (see page 248)
Enables/disables interrupt pulses on JEOC_INT.

ADC_CR1.EOCIE (see page 248)
Enables/disables interrupt pulses on EOC_INT.

ADC_CR2.EOCS (see page 243)
Defines EOC flag occurrence in scan mode.

Output Mode (see page 242)
Defines representation of conversion results.

ADC_SMPRx

ADC_SMPRx.SMPy (see page 243)
Defines sampling length for corresponding input.

ADC_SQRx

ADC_SQRx.L (see page 243)
Defines regular group length and dimension of ADC_DR.

ADC_SQRx.SQy (see page 243)
Defines input sampled by regular group element y.

ADC_JSQR

ADC_SQR.JL (see page 243)
Defines injected group length and dimension of ADC_JDR.

ADC_JSQR.JSQy (see page 243)
Defines input sampled by injected group element y.

Probe Signals ADC_CCR
ADC Common Control register resulting from mask settings.

ADC_CRx
ADC Control registers resulting from mask settings.

ADC_SMPRx
Sample time control registers resulting from mask settings.

407

11 Component Reference

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

408

STM32 F2/F4 ADC REG

STM32 F2/F4 ADC REG

Purpose High fidelity model of STM32 F2/F4 ADC module with register based configu-
ration.

Library Processor in the Loop / Peripherals / STM32 F2/F4 / ADC

Description This block models the STM32 F2/F4 ADC module. The block is configured us-
ing register values which closely emulates the hardware implementation. The
registers can be entered in decimal (15), binary (0b1111) or hexadecimal (0xF)
representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Analog Digital Converter (ADC)”
(on page 240).

Parameters PCLK2 [Hz] (see page 242)
The clock used as as the adc time base in Hz.

ADC_CCR (see page 242)
Common control register defining a clock prescaling.

Reference[LO,HI] (see page 242)
Specification of the reference voltage in mask.

ADC_CR1 (see page 243)
ADC Control register 1.

ADC_CR2 (see page 243)
ADC Control register 2.

ADC_SMPRx (see page 243)
ADC sample time control registers.

ADC_SQRx (see page 243)
ADC regular sequence control registers.

ADC_JSQR (see page 243)
ADC injected sequence control register.

Output Mode (see page 242)
Defines representation of conversion results.

409

11 Component Reference

Probe Signals ADC_CCR
ADC Common Control register resulting from mask settings.

ADC_CRx
ADC Control registers resulting from mask settings.

ADC_SMPRx
Sample time control registers resulting from mask settings.

ADC_SQRx
Regular sequence registers resulting from mask settings.

ADC_JSQR
Injected sequence register resulting from mask settings.

410

STM32 F2/F4 Timer Output Configurator

STM32 F2/F4 Timer Output Configurator

Purpose Helper block for generation of OCxM and CCER registers.

Library Processor in the Loop / Peripherals / STM32 F2/F4 / Timer

Description This block generates the decimal value for the Output Compare mode register
cells (OCxM) and the Capture Compare Enable register (CCER) based on the
configuration of the mask parameters.

Parameters
Output Compare Mode

Register cells for configuration of output channels 1-4
OC1M

Output Compare mode for output channel 1.
OC2M

Output Compare mode for output channel 2.
OC3M

Output Compare mode for output channel 3.
OC4M

Output Compare mode for output channel 4.

Compare Enable Register

Control of output stage and signal polarity
CCxE

Activates output enable circuit for channel x.
CCxNE

Activates output enable circuit for complementary channel x.
CCxP

Controls polarity of channel x.
CCxNP

Controls polarity of complementary channel x.

411

11 Component Reference

STM32 F2/F4 Timer Output GUI

Purpose High fidelity model of the STM32 F2/F4 module with focus on output behavior
and Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / STM32 F2/F4 / Timer

Description This block efficiently models the behavior of a STM32 F2/F4 timer module
with full timing resolution for a variable PWM period. This component is fo-
cussed on PWM generation and therefore on the compare/output features of
the timer. With the Graphical User Interface, the block can simply be config-
ured using combo boxes in the component mask. Under the hood, the result-
ing register configuration is forwarded to the register based implementation of
the STM32 F2/F4 timer module. The resulting register configuration further is
accessible via the probe signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 225).

Parameters
TIM General

Timer Type (see page 226)
Specifies used timer subtype.

CK_PSC [Hz] (see page 226)
Counter clock frequency defined in Hz.

TIM_PSC (see page 226)
A prescaler for the counter time base calculation.

TIM_CR1.CKD (see page 232)
Determines tdts used for dead-time calculation.

TIM_CR1.CMS (see page 226)
Defines counter mode.

TIM_CR1.DIR (see page 226)
Defines counter direction in Edge-aligned mode.

TIM_BDTR.DTG (see page 232)
Configures dead-time for advanced timer subtype.

Initial Counter (see page 229)
Counter initialization.

412

STM32 F2/F4 Timer Output GUI

Initial Direction (see page 229)
Initial counter direction in Center-aligned mode.

TIM INT Enable

Enables Interrupt flag generation on CCxIF and UIF terminals.

TIM_DIER.CCxIE (see page 229)
Enables pulse on CCxIF terminal.

TIM_DIER.UIE (see page 229)
Enables pulse on UIF terminal.

GPIO Mode

Configuration of output level if output enable circuit is inactive.

GPIOM.OCx (see page 239)
Inactive level for channel x.

GPIOM.OCxN (see page 239)
Inactive level for complementary channel x.

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

413

11 Component Reference

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

414

STM32 F2/F4 Timer Output REG

STM32 F2/F4 Timer Output REG

Purpose High fidelity model of the STM32 F2/F4 module with focus on output behavior
and register based configuration.

Library Processor in the Loop / Peripherals / STM32 F2/F4 / Timer

Description This block efficiently models the behavior of a STM32 F2/F4 timer module
with full timing resolution for a variable PWM period. This component is fo-
cussed on PWM generation and therefore on the compare/output features of
the timer. The block is configured using register values which closely emulates
the hardware implementation. The registers can be entered in decimal (15),
binary (0b1111) or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “System Timer for PWM generation
(Output Mode)” (on page 225).

Parameters Timer Type (see page 226)
Specifies used timer subtype.

CK_PSC [Hz] (see page 226)
Counter clock frequency defined in Hz.

TIM_PSC (see page 226)
A prescaler for the counter time base calculation.

TIM_CR1 (see page 226)
Timer control register 1.

TIM_BDTR (see page 232)
Timer dead-time register.

TIM_DIER (see page 229)
Timer interrupt enable register.

GPIO Mode (see page 239)
GPIO Mode configuration register.

Initial Counter (see page 229)
Counter initialization.

Initial Direction (see page 229)
Initial counter direction in Center-aligned mode.

415

11 Component Reference

Probe Signals CCRx
Compare register.

OCxM
Output compare mode.

CCER
Timer Compare enable register.

OCx
Output channels.

OCxN
Complementary output channels.

CCxIF
Compare interrupt flags.

UIF
Update event interrupt flags.

TIM_ARR
Timer auto-reload register.

TIM_CR1
Timer control register 1.

TIM_PSC
Timer prescaler register.

TIM_DIER
Timer interrupt enable register.

TIM_BDTR
Timer dead-time register.

FLAGS
Counter value, event flags and counter direction.

416

MC dsPIC33F MCADC GUI

MC dsPIC33F MCADC GUI

Purpose High fidelity model of the Microchip dsPIC33F motor control ADC module
with Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / ADC

Description This block efficiently models the behavior of a Microchip dsPIC33F motor con-
trol PWM module with full timing resolution for a variable PWM period. The
module is configured using a graphical user interface. With the Graphical
User Interface, the block can simply be configured using combo boxes in the
component mask. Under the hood, the resulting register configuration is for-
warded to the register based implementation of the Microchip motor control
module. The resulting register configuration further is accessible via the probe
signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Microchip Motor Control ADC” (on
page 264).

Parameters

ADC General

System clock [Hz] (see page 266)
The system clock of the processor defined in Hz.

Internal RC clock [Hz] (see page 266)
PWM time base control register.

External Reference [Vref-, Vref+] (see page 266)
Specification of external reference voltage in mask.

Internal Reference [AVSS,AVDD] (see page 266)
Specification of internal reference voltage in mask.

Output Mode (see page 266)
Defines representation of conversion results.

417

11 Component Reference

ADC Control Register

ADCON1.SIMSAM (see page 269)
Select multi-channel sequential or simultaneous sampling mode.

ADCON1.SSRC (see page 268)
Select ADC start-of-conversion trigger.

ADCON1.FORM (see page 266)
Select output data format.

ADCON1.AD12B (see page 266)
Select ADC resolution.

ADCON2.ALTS (see page 271)
Select fixed or alternative sampling mode.

ADCON2.BUFM (see page 274)
Select buffer fill mode.

ADCON2.SMPI (see page 273)
Select the sample and conversion operation bits value.

ADCON2.CHPS (see page 266)
Select channels to be converted.

ADCON2.CSCNA (see page 271)
Enable channel 0 scan mode operation.

ADCON2.VCFG (see page 266)
Select ADC reference voltage.

ADCON3.ADCS (see page 266)
A prescaler for the ADC time base calculation.

ADCON3.ADRC (see page 266)
Select ADC clock source.

ADC Channel Select

ADCHS123.CH123SA (see page 271)
Select analog input channels as the positive input for MUXA.

ADCHS123.CH123NA (see page 271)
Select analog input channel or voltage reference as the negative input for
MUXA.

ADCHS123.CH123SB (see page 271)
Select analog input channels as the positive input for MUXB.

418

MC dsPIC33F MCADC GUI

ADCHS123.CH123NB (see page 271)
Select analog input channel or voltage reference as the negative input for
MUXB.

ADCHS0.CH0SA (see page 271)
Select analog input channels as the positive input for MUXA.

ADCHS0.CH0NA (see page 271)
Select analog input channel or voltage reference as the negative input for
MUXA.

ADCHS0.CH0SB (see page 271)
Select analog input channels as the positive input for MUXB.

ADCHS0.CH0NB (see page 271)
Select analog input channel or voltage reference as the negative input for
MUXB.

ADC Channel Scan

CSSx (see page 271)
Enable scan of input ANx when ADC operated in channel scan mode.

Probe Signals ADCONx
ADC control register x.

ADCHS123
ADC input channel 1, 2, 3 select register.

ADCHS0
ADC input channel 0 select register.

ADCSSL
ADC input scan select register low.

419

11 Component Reference

MC dsPIC33F MCADC REG

Purpose High fidelity model of the Microchip dsPIC33F motor control ADC module
with register based configuration.

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / ADC

Description This block models the Microchip motor control ADC module. The block is con-
figured using register values which closely emulates the hardware implemen-
tation. The registers can be entered in decimal (15), binary (0b1111) or hex-
adecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Microchip Motor Control ADC” (on
page 264).

Parameters System clock [Hz] (see page 266)
The system clock of the processor defined in Hz.

Internal RC clock [Hz] (see page 266)
PWM time base control register.

External Reference [Vref-, Vref+] (see page 266)
Specification of external reference voltage in mask.

Internal Reference [AVSS,AVDD] (see page 266)
Specification of internal reference voltage in mask.

ADCONx (see page 268)
ADC control register x.

ADCHS123 (see page 271)
ADC input channel 1, 2, 3 select register.

ADCHS0 (see page 271)
ADC input channel 0 select register.

ADCSSL (see page 271)
ADC input scan select register low.

Output Mode (see page 266)
Defines representation of conversion results.

420

MC dsPIC33F MCADC REG

Probe Signals ADCONx
ADC control register x.

ADCHS123
ADC input channel 1, 2, 3 select register.

ADCHS0
ADC input channel 0 select register.

ADCSSL
ADC input scan select register low.

421

11 Component Reference

MC dsPIC33F MCPWM Configurator

Purpose Helper block for generation of POVDCON register

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / PWM

Description This block generates the decimal value for the PWM Override Control (POVD-
CON) register based on the configuration of the mask parameters.

Parameters POVDCON.POUTxL
PWM manual output bit for low-side PWM pin of module x.

POVDCON.POUTxH
PWM manual output bit for high-side PWM pin of module x.

POVDCON.POVDxL
PWM output override bit for low-side PWM pin of module x.

POVDCON.POVDxH
PWM output override bit for high-side PWM pin of module x.

422

MC dsPIC33F MCPWM GUI

MC dsPIC33F MCPWM GUI

Purpose High fidelity model of the Microchip dsPIC33F motor control PWM module
with Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / PWM

Description This block efficiently models the behavior of a Microchip dsPIC33F motor con-
trol PWM module with full timing resolution for a variable PWM period. The
module is configured using a graphical user interface. With the Graphical
User Interface, the block can simply be configured using combo boxes in the
component mask. Under the hood, the resulting register configuration is for-
warded to the register based implementation of the Microchip motor control
module. The resulting register configuration further is accessible via the probe
signals.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Microchip Motor Control PWM”
(on page 253).

Parameters
PWM General

Fcy [Hz] (see page 255)
Counter clock frequency defined in Hz.

PTCON.PTMOD (see page 255)
PWM counter mode.

PTCON.PTCKPS (see page 255)
A prescaler for the counter time base calculation.

PTCON.PTOPS (see page 255)
A prescaler for the counter time base calculation.

PWMCON1.PMODx (see page 257)
Specifies operation of PWMx I/O pair in independent or complementary
mode.

PWMCON2.OSYNC (see page 258)
Output override synchronization bit.

PWMCON2.SEVOPS (see page 260)
A postscaler for the PWM special event trigger output.

423

11 Component Reference

FPOR:POR.HPOL (see page 257)
PWM high-side polarity bit.

FPOR:POR.LPOL (see page 257)
PWM low-side polarity bit.

Dead Time Module

PDTCON1.DTA (see page 261)
Unsigned 6-bit dead time value bits for Dead Time Unit A.

PDTCON1.DTAPS (see page 261)
A prescaler for the PWM Dead Time Unit A.

PDTCON1.DTB (see page 261)
Unsigned 6-bit dead time value bits for Dead Time Unit B.

PDTCON1.DTBPS (see page 261)
A prescaler for the PWM Dead Time Unit B.

PDTCON2.DTSxA (see page 261)
Dead Time Select bits for PWM high-side signal going active for module x.

PDTCON2.DTSxI (see page 261)
Dead Time Select bits for PWM low-side signal going active for module x.

Probe Signals PTPER
PWM time base period register.

PTCON
PWM time base control register.

PWMCONx
PWM control register x.

PDTCONx
Dead time control register x.

FPOR:POR
Device output pin configuration register.

PWMIF
PWM interrupt flags.

SEVT
PWM Special Event Trigger.

PWMHx
High-side output for PWMx.

424

MC dsPIC33F MCPWM GUI

PWMLx
Low-side output for PWMx.

PDCx
PWM duty cycle register x.

PSECMP
Special event compare register.

POVDCON
PWM override control register.

425

11 Component Reference

MC dsPIC33F MCPWMx GUI

Purpose High fidelity model of a single Microchip dsPIC33F motor control PWM mod-
ule with Graphical User Interface configuration.

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / PWM

Description This block efficiently models the behavior of a single Microchip dsPIC33F
motor control PWM module with full timing resolution for a variable PWM
period. The module is configured using a graphical user interface. With the
Graphical User Interface, the block can simply be configured using combo
boxes in the component mask. This is the basic building block that is used in
the register based MCPWM implementation which contains 4 modules.
For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Microchip Motor Control PWM”
(on page 253).

Parameters
PWM General

Fcy [Hz] (see page 255)
Counter clock frequency defined in Hz.

PTCON.PTMOD (see page 255)
PWM counter mode.

PTCON.PTCKPS (see page 255)
A prescaler for the counter time base calculation.

PTCON.PTOPS (see page 255)
A prescaler for the counter time base calculation.

PWMCON1.PMOD (see page 257)
Specifies operation of the PWM module I/O pair in independent or comple-
mentary mode.

PWMCON2.OSYNC (see page 258)
Output override synchronization bit.

PWMCON2.SEVOPS (see page 260)
A postscaler for the PWM special event trigger output.

FPOR:POR.HPOL (see page 257)
PWM high-side polarity bit.

FPOR:POR.LPOL (see page 257)
PWM low-side polarity bit.

426

MC dsPIC33F MCPWMx GUI

Dead Time Module

PDTCON1.DTA (see page 261)
Unsigned 6-bit dead time value bits for Dead Time Unit A.

PDTCON1.DTAPS (see page 261)
A prescaler for the PWM Dead Time Unit A.

PDTCON1.DTB (see page 261)
Unsigned 6-bit dead time value bits for Dead Time Unit B.

PDTCON1.DTBPS (see page 261)
A prescaler for the PWM Dead Time Unit B.

PDTCON2.DTSA (see page 261)
Dead Time Select bits for PWM high-side signal going active in this mod-
ule.

PDTCON2.DTSI (see page 261)
Dead Time Select bits for PWM low-side signal going active in this mod-
ule.

Probe Signals PTPER
PWM time base period register.

PTCON
PWM time base control register.

PWMCONx
PWM control register x.

PDTCONx
Dead time control register x.

FPOR:POR
Device output pin configuration register.

PWMIF
PWM interrupt flags.

SEVT
PWM Special Event Trigger.

PWMHx
High-side output for PWMx.

PWMLx
Low-side output for PWMx.

PDCx
PWM duty cycle register x.

427

11 Component Reference

PSECMP
Special event compare register.

428

MC dsPIC33F MCPWM REG

MC dsPIC33F MCPWM REG

Purpose High fidelity model of the Microchip dsPIC33F motor control PWM module
with register based configuration.

Library Processor in the Loop / Peripherals / Microchip dsPIC33F / PWM

Description This block efficiently models the behavior of a Microchip dsPIC33F motor con-
trol PWM module with full timing resolution for a variable PWM period. The
block is configured using register values which closely emulates the hardware
implementation. The registers can be entered in decimal (15), binary (0b1111)
or hexadecimal (0xF) representation.

For a detailed description of the supported features and the usage of the block
please refer to the detailed documentation “Microchip Motor Control PWM”
(on page 253).

Parameters Fcy [Hz] (see page 255)
Counter clock frequency defined in Hz.

PTCON (see page 255)
PWM time base control register.

PWMCONx (see page 255)
PWM control register x.

PDTCONx (see page 261)
Dead time control register x.

FPOR:POR (see page 257)
Device output pin configuration register.

Probe Signals PTPER
PWM time base period register.

PTCON
PWM time base control register.

PWMCONx
PWM control register x.

PDTCONx
Dead time control register x.

FPOR:POR
Device output pin configuration register.

429

11 Component Reference

PWMIF
PWM interrupt flags.

SEVT
PWM Special Event Trigger.

PWMHx
High-side output for PWMx.

PWMLx
Low-side output for PWMx.

PDCx
PWM duty cycle register x.

PSECMP
Special event compare register.

POVDCON
PWM override control register.

430

Processor-in-the-Loop

Processor-in-the-Loop

Purpose Interface actual code executing on real hardware with simulation

Library Processor in the Loop

Description The PLECS PIL block interfaces a plant simulated in PLECS with control
code executed on a real micro controller.

For more information on how to work with PIL see section “Processor-in-the-
Loop” (on page 5). The PIL block usage and parameters are described in fur-
ther details in section “PIL Block” (on page 12).

Parameters
General

Target
A PIL block is associated with a target defined in the target manager,
which is selected from the Target combo box. The Configure... button is
a shortcut to the “Target Manager” (on page 9) to configure current and
new targets.

Sample time
The PIL block can be triggered at a fixed periodic rate by configuring the
sampling time as a positive value. By setting the parameter to -1 or [-1 0]
the PIL block will execute with an inherited sample time.

External trigger
The direction of the edges of the trigger signal upon which the PIL block is
executed.

Output delay
The delay time between input and output of the PIL block, in seconds. A
delay of 0 is a valid setting, but it will create direct-feedthrough between
inputs and outputs.

Inputs

Number of inputs (see page 12)
The number of input terminals to the PIL block. Probes can also be added
to inputs by selecting them and clicking the > button. To remove a probe,
select it and either press the Delete key or < button.

431

11 Component Reference

Outputs

Number of outputs (see page 12)
The number of output terminals to the PIL block. Probes can also be
added to outputs by selecting them and clicking the > button. To remove
a probe, select it and either press the Delete key or < button.

Note It is possible to multiplex several probes into one input/output. The se-
quence of the probes can be reordered by dragging probes up and down the list.

432

electrical engineering software

Plexim GmbH info@plexim.com www.plexim.com

User Manual Version 3.4

The siMUlaTion plaTforM for
power elecTronic sysTeMs

p
lec

s U
ser M

anual Version 3.4

	Contents
	Before You Begin
	Installing the PIL Demo Projects
	What's New in this Version
	Major New Features
	Further Enhancements

	Processor-in-the-Loop
	Motivation
	How PIL Works
	PIL Modes
	Configuring PLECS for PIL
	Target Manager
	Communication Links

	PIL Block

	PIL Framework
	Overview
	PIL Prep Tool
	Probes
	Read Probes
	Override Probes

	Calibrations
	Code Identity
	Remote Agent
	Communication Callbacks
	Serial Communication
	JTAG-based Parallel Communication

	Framework Integration and Execution
	Principal Framework Calls
	Control Callback
	Target Mode Switching
	Simulation Start and Termination
	Control Dispatching
	Task Synchronization at Start of Simulation

	Framework Configuration
	Configuration Constants
	Initialization Constants

	TI C2000 Peripheral Models
	Introduction
	Enhanced Pulse Width Modulator (ePWM) Type 1
	Supported Submodules and Functionalities
	Time-Base (TB) Submodule
	Initialization and Synchronization
	Counter-Compare (CC) Submodule
	Action-Qualifier (AQ) Submodule
	Event-Trigger (ET) Submodule
	Dead-Band Submodule

	Enhanced Pulse Width Modulator (ePWM) Type 4
	Supported Submodules and Functionalities
	Time-Base (TB) Submodule
	Initialization and Synchronization
	Counter-Compare (CC) Submodule
	Action-Qualifier (AQ) Submodule
	Event-Trigger (ET) Submodule
	Dead-Band Submodule

	Analog Digital Converter (ADC) Type 2
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sampling Mode
	ADC Sequencer Mode
	ADC Trigger and Interrupt Logic
	Summary of PLECS Implementation

	Analog Digital Converter (ADC) Type 3
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Reference Voltage Generator
	ADC Sample Generation Logic
	ADC Input Circuit
	ADC Interrupt Logic

	Analog Digital Converter (ADC) Type 4
	ADC Module Overview
	ADC Converter and Result Register
	ADC SOC Arbitration & Control
	ADC Input Circuit
	ADC Interrupt Logic
	Post-Processing Blocks

	Enhanced Capture (eCAP) Type 0
	eCAP Module Operated in Capture Mode
	Event Prescaler
	Edge Polarity Select and Capture Control
	eCAP Module Operated in APWM Mode
	eCAP Interrupts
	eCAP Counter Update
	Summary of PLECS Implementation

	Enhanced Quadrature Encoder Pulse (eQEP) Type 0
	Encoder
	eQEP Module Overview
	Quadrature Decoder Unit
	Position Counter and Control Unit
	Position Counter Reset on Index Event
	Position Counter Reset on Max Position
	Position Counter Reset on First Index Event
	Position Compare Unit
	Edge Capture Unit
	eQEP Interrupt
	Summary of PLECS Implementation

	STM32 F0xx Peripheral Models
	Introduction
	System Timer for PWM Generation (Output Mode)
	Timer Subtypes
	General Counter Behavior
	Initialization and Synchronization
	Interrupt Flags
	Output Mode Controller
	4 Channel Advanced Timer
	4 Channel General Purpose Timer
	2 Channel Complementary GP Timer with Deadtime
	1 Channel Complementary GP Timer with Deadtime
	1 Channel General Purpose Timer
	GPIO Mode

	Analog-Digital Converter (ADC)
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sample Logic
	ADC Trigger and Register Write Latency
	ADC Interrupt Logic

	STM32 F1xx Peripheral Models
	Introduction
	System Timer for PWM Generation (Output Mode)
	Timer Subtypes
	General Counter Behavior
	Initialization and Synchronization
	Interrupt Flags
	Output Mode Controller
	4 Channel Advanced Timer
	4 Channel General Purpose Timer
	2 Channel Complementary GP Timer with Deadtime
	1 Channel Complementary GP Timer with Deadtime
	2 Channel General Purpose Timer
	1 Channel General Purpose Timer
	GPIO Mode

	Analog-Digital Converter (ADC)
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sample Logic
	ADC Interrupt Logic

	STM32 F3xx Peripheral Models
	Introduction
	System Timer for PWM Generation (Output Mode)
	Timer Subtypes
	General Counter Behavior
	Initialization and Synchronization
	Interrupt Flags
	Output Mode Controller and Output Selector
	6 Channel Advanced Timer
	4 Channel General Purpose Timer
	2 Channel General Purpose Timer
	1 Channel General Purpose Timer
	GPIO Mode

	Analog-Digital Converter (ADC)
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sample Logic
	ADC Interrupt Logic

	STM32 F2xx/F4xx Peripheral Models
	Introduction
	System Timer for PWM Generation (Output Mode)
	Timer Subtypes
	General Counter Behavior
	Initialization and Synchronization
	Interrupt Flags
	Output Mode Controller
	4 Channel Advanced Timer
	4 Channel General Purpose Timer
	2 Channel General Purpose Timer
	1 Channel General Purpose Timer
	GPIO Mode

	Analog-Digital Converter (ADC)
	ADC Module Overview
	ADC Converter with Result Registers
	ADC Sample Logic
	ADC Interrupt Logic

	Microchip dsPIC33F Peripheral Models
	Introduction
	Microchip Motor Control PWM
	MCPWM Module Overview
	PWM Clock Control
	PWM Output Control and Resolution
	PWM Output Override
	Special Event Trigger
	Interrupt Control
	Dead Time Generator
	Summary of PLECS Implementation

	Microchip Motor Control ADC
	MCADC Module Overview
	ADC Configuration
	ADC Sampling and Conversion
	Multi-channel ADC Sampling Mode
	ADC Input Selection Mode
	ADC Interrupt Logic
	ADC Buffer Fill Mode
	Summary of PLECS Implementation

	Infineon XMC1xxx Peripheral Models
	Introduction
	CCU 4 Single Timer Slice (Compare Mode)
	Model overview
	Timer Slice Core Functions
	Timer Slice Input Path
	Slice Connection Matrix
	Timer Slice Output Path
	Timer Slice Advanced Functions
	Timer Slice Interrupt generation
	Timer Slice Flag Signals

	CCU 8 Single Timer Slice (Compare Mode)
	Model overview
	Timer Slice Core Functions
	Timer Slice Compare Modes and ST generation
	Timer Slice Dead Time Generator
	Timer Slice Input Path
	Slice Connection Matrix
	Timer Slice Output Path
	Timer Slice Advanced Functions
	Timer Slice Interrupt generation
	Timer Slice Flag Signals

	Components by Category
	Peripheral Blocks Infineon XMC1000
	Peripheral Blocks TI C2000
	Peripheral Blocks STM32 F0
	Peripheral Blocks STM32 F1
	Peripheral Blocks STM32 F3
	Peripheral Blocks STM32 F2/F4
	Peripheral Blocks Microchip dsPIC33F

	Component Reference
	Infineon XMC1000 CCU4 Slice Compare Mode GUI
	Infineon XMC1000 CCU4 Slice Compare Mode REG
	Infineon XMC1000 CCU8 Slice Compare Mode GUI
	Infineon XMC1000 CCU8 Slice Compare Mode REG
	TI C2000 ADC Type 2 GUI
	TI C2000 ADC Type 2 REG
	TI C2000 ADC Type 3 GUI
	TI C2000 ADC Type 3 REG
	TI C2000 ADC Type 3 Simplified
	TI C2000 ADC Type 4 GUI
	TI C2000 ADC Type 4 REG
	TI C2000 eCAP Type 0 APWM GUI
	TI C2000 eCAP Type 0 CAP GUI
	TI C2000 eCAP Type 0 CAP REG
	TI C2000 ePWM Type 1 Configurator
	TI C2000 ePWM Type 1 GUI
	TI C2000 ePWM Type 1 REG
	TI C2000 ePWM Type 4 Configurator
	TI C2000 ePWM Type 4 GUI
	TI C2000 ePWM Type 4 REG
	TI C2000 eQEP Type 0 GUI
	TI C2000 eQEP Type 0 REG
	STM32 F0 ADC GUI
	STM32 F0 ADC REG
	STM32 F0 Timer Output Configurator
	STM32 F0 Timer Output GUI
	STM32 F0 Timer Output REG
	STM32 F1 ADC GUI
	STM32 F1 ADC REG
	STM32 F1 Timer Output Configurator
	STM32 F1 Timer Output GUI
	STM32 F1 Timer Output REG
	STM32 F3 ADC GUI
	STM32 F3 ADC REG
	STM32 F3 Timer Output Configurator
	STM32 F3 Timer Output GUI
	STM32 F3 Timer Output REG
	STM32 F2/F4 ADC GUI
	STM32 F2/F4 ADC REG
	STM32 F2/F4 Timer Output Configurator
	STM32 F2/F4 Timer Output GUI
	STM32 F2/F4 Timer Output REG
	MC dsPIC33F MCADC GUI
	MC dsPIC33F MCADC REG
	MC dsPIC33F MCPWM Configurator
	MC dsPIC33F MCPWM GUI
	MC dsPIC33F MCPWMx GUI
	MC dsPIC33F MCPWM REG
	Processor-in-the-Loop

