Plegs

THE SIMULATION PLATFORM FOR
POWER ELECTRONIC SYSTEMS

TI C2000 Target Support User Manual Version 1.5

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Zurich

Switzerland
info@plexim.com Email
http://www.plexim.com Web

TI C2000 Target Support User Manual
© 2022 by Plexim GmbH

The product described in this manual is furnished under a license agreement.
The software may be used or copied only under the terms of the license agree-
ment. No part of this manual may be photocopied or reproduced in any form
without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and
Simulink Coder are registered trademarks of The MathWorks, Inc. Bonjour
is a registered trademark of Apple, Inc. Other product or brand names are
trademarks or registered trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

Contents

Contents iii
1 Quick Start 3
Requirements 3
Install the Target Support Package 3
Using the Installer Executable 3
Manual Installation oL 4

Build and Flash Configuration Settings 5
Program the MCU from PLECS 5
Program the MCU from CCS 8

Start the External Mode 9
Troubleshooting Guide 10

Tips for Programming C2000 LaunchPads 11
LAUNCHXL-F28069 LaunchPad 11
LAUNCHXL-F280049 LaunchPad 12
LAUNCHXL-F2837x LaunchPad 13

TI C2000 Target Support and the PLECSRT Box 14

Contents

iv

2 C2000 Target Support Architecture
OVEIVIEW o e e e e e e
The Embedded Code Generation Workflow
Control Task Execution
Control Task Accuracy and PWM Frequency Tolerance
Explicit and Implicit Trigger Definitions
The Code Generation Project

3 TI C2000 Coder Options

General

CAN Port e
CAN Receive o i e e
CAN Transmit o
Control Task Trigger i it i e
CPU Load e

Digital In e
Digital Out e
External Sync e
Override Probe
Peak Current Controller
Powerstage Protection
Pulse Capture e
PWM . . e
PWM (Variable) e

15
15
15
16
17
18
26

29
29
30
30
31

Contents

Quadrature Encoder Counter (QEP) 64
Read Probe 65
SPI Master 66
SPISlave e e 71
Timer o e e 73

Contents

Quick Start

Requirements

The PLECS Texas Instruments (TI) C2000 Target Support Package supports
the TI 2806x, TT 2837x, TI 2838x, TI 28004x, and TI 2833x microprocessors.

In order to use the PLECS TI C2000 Target Support Package you will
need:

* a host computer (with Microsoft Windows or Mac OS X),

PLECS Blockset or Standalone 4.6.1 or newer

PLECS Coder

UniFlash for TI microcontrollers v6.4.0

e (C2000 Code Gen Tools (C2000-CGT-18) v18.12.8.LTS

If you have not done so yet, please download and install the latest PLECS re-
lease on your host computer.

Install the Target Support Package

For installation on Windows, using the Installer Executable is highly recom-
mended. For other platforms, the manual installation process must be fol-
lowed.

Using the Installer Executable

Download the Installer Executable from the web page
https://www.plexim.com/download/tsp_c2000, and double click on it to
start the setup of the TI C2000 Target Support Package. Choose the desired

https://www.plexim.com/download/tsp_c2000/

l Quick Start

location to install the files and select the desired installation type to proceed
with the setup.

Choosing Compact Installation would only install the tools required for core
functionality; these include the TI C2000 Target Support Package and the
PLECS RT Box Target Support Package. Whereas, choosing Full Installa-
tion would download and install all the the necessary tools required to build
and program the TI MCU from PLECS, including the auxiliary TI tools, de-
scribed in the section below.

Manual Installation

Download the appropriate ZIP archive from the web page
https://www.plexim.com/download/tsp_c2000, extract it and move the

ti c2000 folder to the PLECS Coder target support packages path e.g. to

HOME /Documents/PLECS/CoderTargets. In PLECS, choose Preferences... from
the File drop-down menu (PLECS menu on Mac OS X) to open the PLECS
Preferences dialog.

Navigate to the Coder tab and click on the Change button to select the
HOME /Documents/PLECS/CoderTargets folder. The targets included as part of
the TI C2000 Target Support Package should now be listed under Installed
targets. You will also see these targets available in the Coder + Coder op-
tions... window in the drop-down menu on the Target tab.

Another folder labeled projects is included in the ZIP archive. The contents
of this folder is required only when the PLECS Coder is configured to generate
code into a Code Composer Studio (CCS) project. The projects/28xx.zip files
contain CCS projects that are used in conjunction with the embedded code
generated from PLECS.

A set of basic demos is also included with the TI C2000 Target Support Pack-
age. Most of these demos use the PLECS RT Box to perform hardware-in-the-
loop testing of the generated code. Therefore, the PLECS RT Box Target Sup-
port Package should be installed and configured. The RT Box Target Support
Package can be downloaded from https://www.plexim.com/download/rt_box.
The PLECS RT Box hardware is not required to generate and run microcon-
troller (MCU) code or to run the demo models offline in PLECS Blockset and
Standalone.

https://www.plexim.com/download/tsp_c2000/
https://www.plexim.com/download/rt_box

Build and Flash Configuration Settings

Build and Flash Configuration Settings

There are two primary methods to deploy generated embedded code onto a
TI C2000 MCU. Both methods use free tools available from TI. You must
download these tools from the TI website as they are not provided with your
PLECS installation.

1 Build and program the MCU from PLECS You can directly program the
target device from the PLECS application. This approach requires two stan-
dalone utilities available from TI: C2000 Code Gen Tools (CGT) and Uni-
Flash. The C2000 CGT includes a compiler, assembler, linker, and addi-
tional tools to build C/C++ applications for the TI C2000 family of MCUs.
UniFlash is a tool to program the on-chip flash memory of TI MCUs. Click-
ing Build in the Coder Options dialog generates model C code, builds the
application using C2000 CGT, and then flashes the embedded target using
UniFlash.

2 Build and program the MCU from CCS In this approach the PLECS
Coder generates embedded C code for the specified target into a template
CCS project. The CCS application is then used to build the project and flash
the target device. The advantage of this method is having access to CCS’s
debugging tools.

If the required software is installed on your PC you can easily switch between
the two methods by changing the Build type parameter in the Coder op-
tions... + Target + General menu.

Program the MCU from PLECS

Configuring Tl Code Gen Tools and UniFlash

If “Full Installation” was performed using the Installer Executable the setup
process earlier, then these tools should be installed and configured. To manu-
ally configure these tools, download and install the following versions of C2000
Code Gen Tools and UniFlash, available online:

UniFlash v6.4.0: https://www.ti.com/tool/download/UNIFLASH
C2000-CGT v18.12.8.LTS: https://www.ti.com/tool/download/C2000-
CGT-18

https://www.ti.com/tool/download/UNIFLASH
https://www.ti.com/tool/download/C2000-CGT-18
https://www.ti.com/tool/download/C2000-CGT-18

l Quick Start

To configure the PLECS Coder to use the external TI tools, select Prefer-
ences... from the File drop-down menu (PLECS menu on Mac OS X) to open
the PLECS Preferences dialog. Click the Coder tab to see the installed tar-
gets. There is a 4 icon next to the TI C2000 entry in the Family column indi-
cating the external tools are not yet configured. After clicking the icon a dialog
will appear where the user can enter the installation directories of the C2000
CGT and UniFlash tools. Once the installation directories are entered, you
will see a & icon in the Family column, as shown in Figure 1.1.

Deploy code to C2000 target from PLECS

To deploy code to a C2000 target from PLECS, navigate to the PLECS Coder
Options + Target window, select the target MCU, then set the Build type to
Build and program. There is a choice to select either Run from Flash or Run
from RAM as the Build configuration. If using a Launchpad or a ControlCard
as the Board type, select the appropriate one from the dropdown menu, and
click Build to build, program and execute the generated code on the C2000
target.

If using a Custom Board instead, you need to first generate the target config-
uration file once for a specific MCU. All information required to program the
MCU is contained in the target configuration file. Target configuration files
establish the basic communication settings for the MCU. Target configuration
files have a ccxml extension and can be generated automatically from the Uni-
Flash tool graphical user interface.

Open the UniFlash application and create a new configuration based on your
selected device and connection method. Click the Start button after modifying
any additional configuration options. After clicking Start you will now see a
link to download the ccxml file near the top of the window.

After downloading the target configuration file navigate back to the PLECS
Coder Options + Target window, set the Board field to Custom. The Uni-
Flash target configuration field will now be visible. Enter the path to the
ccxml file downloaded from UniFlash.

Modify any additional settings for your chosen target in the Coder Options
window, including enabling or disabling the External Mode, and then click
Build. This will automatically build the code, program the MCU, and start
executing the generated code. Note that this programming method requires
that only one TI C2000 MCU is connected to your host PC.

In the event there is an error in programming the MCU, the PLECS diagnos-
tics window will contain additional debugging information. The diagnostics

Build and Flash Configuration Settings

General Libraries

Installed targets

) PLECS Preferences

Thermal Scope Colors Updates Coder

Target support packages path

Y:/Desktop/Coder_Targets

Change

Name

STM32G4x
STM32F3x
T12806x
T128004x
TI2833x
TI2837xS
TI2838x

Version
PLECS RT Box 12.1.8
PLECS RT Box 2 2.1.8
PLECS RT Box 3 2.1.8

1.1.1
1.1.1
1.5.1
1.5.1
1.5.1
1.5.1
1.5.1

Cancel Apply Help

Family Package

PLECS RT Box PLECS_RT_Box

YSTM32 tsp_stm32

7 T1 C2000 tsp_ti_c2000

Rescan

Figure 1.1: Configuring the target support package and external tool paths

window is accessible from the exclamation icon in the lower right hand corner
of any PLECS schematic window.

l Quick Start

Program the MCU from CCS

Configuring CCS

Download and install CCS v9.3 from the TI website. This CCS version is
available at the following location:

CCS v9.3: https://processors.wiki.ti.com/index.php/Download CCS

After installing CCS, the next step is to import one of the template projects in-
cluded as part of the TT C2000 Target Support Package. First, locate the pro-
jects/28xx.zip archives. This will be located in the TI C2000 Target Support
Package directory that you have downloaded and installed from the web page
https://www.plexim.com/download/tsp_c2000.

Next, open CCS and click on the Project drop-down menu and then select
Import CCS Projects.... Then choose Select archive file and Browse... the
zip archive in the projects folder that corresponds to the desired target. Se-
lect the discovered project and click on Finish. You will notice a new project
created in your CCS workspace.

Then, in the Project Explorer tab of CCS, from the context menu of your
project, add a new Target Configuration File or ccxml file for your target.
Modify any required settings and test the connection with your MCU.

Next, re-open the context menu of your project and navigate to the Proper-
ties + General window, and make sure that the selected Compiler version
matches the version recommended in the section “Requirements” (on page 3).
If not, locate and install the recommended compiler version from the Help
drop-down menu, under Install Code Generation Compiler Tools... + TI
Compiler Updates.

Return to the PLECS application, navigate to the Coder + Coder Op-
tions... window and select the Target tab. Ensure the Generate code into
CCS project option is selected as the Build type. Enter the location of the
${workspace_loc}/dev_28xx/cg/ folder from the CCS project into the CCS
project directory field and click Build. Note that {workspace_ loc} refers to
the location of the imported project in the CCS workspace. You will notice sev-
eral new files created in the ${workspace loc}/dev_28xx/cg/ directory. Then,
proceed to build and debug your project as you would a normal CCS project.
The project will not compile without first generating code from PLECS.

Note that it is necessary to manually delete the contents of the
${workspace_loc}/dev_28xx/cg/ folder when generating code for a new

https://processors.wiki.ti.com/index.php/Download_CCS
https://www.plexim.com/download/tsp_c2000/

Start the External Mode

subsystem of a different name, as the CCS builder will build all files in this
folder, including old files.

Start the External Mode

Once the generated code is running on the C2000 target, the user can enter
the External Mode to update Scopes in the PLECS application with real-time
waveforms and change certain simulation parameters. The Enable External
Mode checkbox must be selected when building the project.

To establish a communication link with your target, open the Coder op-
tions... + External Mode tab and then select the /" icon next to the Tar-

get device field. Select the device type for the MCU connected to your PC.
Click the Sean button to list of device names of available connections, select
the appropriate device name, and then click the OK button to proceed. Click
the Connect button and if the connection is successful you will see the trigger
controls activate. Note that the XDS interface typically has two serial inter-
face channels. One interface is for debugging and the other is for auxiliary
communication including UART. If the External Mode connection to the device
is unsuccessful, it is possible the debug channel was selected instead of the
auxiliary communication channel.

Set the Number of samples parameter to 200 and click on the Start au-
totriggering button. You will now see real-time data from the MCU in the
PLECS Scopes. You can synchronize the data capture to a specific trigger
event. To do so, change the Trigger channel selection from Off to the desired
signal. The Scope will now show a small square indicating the trigger level
and delay. If the level or delay are outside the current axes limits, a small tri-
angle will be shown instead. Drag the trigger icon to change the trigger level,
drag it with the left mouse-button pressed to change the trigger delay. Both
parameters can also be set in the External Mode dialog.

Note While a trigger channel is active, the Scope signals are only updated
when a trigger event is detected.

While the PLECS model is connected via the External Mode, the model is
locked against modifications. To disconnect from the MCU and other External
Mode connections, click on the Disconnect button or close the Coder Options
dialog.

l Quick Start

Troubleshooting Guide

If you're unable to connect to the External Mode, see the suggestions below:

1 If you’re using the Windows operating system, open the Device Manager
and verify that the “Load VCP” port of the “XDS100 Class Auxiliary Port”
under “Texas Instruments Debug Probes” is enabled (unplug the MCU from
the computer and replug if necessary). If configured correctly, the appropri-
ate auxiliary port should show up under “Ports”, as shown in Figure 1.2.

& Device Manager - m] X

File Action View Help

e m B BHm B EXG

‘ General Advanced Power Management Driver Details Events

w XDS100 Class Auxiliary Port

== |DE ATA/ATAPI controllers A

= Keyboards

@ Mice and other pointing devices Configuration

X Monitors Use these settings to override nomal device behaviour.

I Network adapters

v & Ports (COM & LPT) -
ﬁ XDS100 Class USB Serial Port (COM9)

Enable Selective Suspend

M Print queues

= Printers [|

n Processors

[3 Sensors

B Software devices

i} Sound, video and game controllers

Q.'y Storage controllers

E3 System devices

v & Texas Instruments Debug Probes

58 XDS100 Class Auxiliary Port
[Z3 XDS100 Class Debug Port

i Universal Serial Bus controllers v

OK Cancel Help

Figure 1.2: Configuring Load VCP

2 Verify that the jumpers are installed in the correct position. For information
on the appropriate jumper settings, refer to the section “Tips for Program-
ming C2000 LaunchPads” (on page 11), and to the data sheet of the MCU.

3 If there is insufficient time to execute the generated code, then the pro-
cessor will halt and you won’t be able to connect to the External Mode. In
such a scenario, first, test that the External Mode works with a very sim-
ple model (e.g., toggle a GPIO) to ensure the problem is not due to a hard-

Tips for Programming C2000 LaunchPads

ware or driver configuration. If the connection issue persists with a specific
model, then potential solutions are:

¢ Reduce the complexity of the model, for example by reducing the number
of scopes or optimizing computationally intensive calculations.

¢ Decrease the Target buffer size parameter under Target +External
Mode.

¢ Increasing the discretization step size.

Tips for Programming C2000 LaunchPads

Each TI C2000 LaunchPad has several jumpers and DIP switches that con-
figure the target device’s power isolation, communication isolation, and boot
mode settings. The following settings are recommended to program the MCU
and connect via the External Mode for supported LaunchPad devices.

Note the serial communication interface GPIO used for the External Mode
will differ for some C2000 targets. The settings configured by the jumper and
switch positions below should match the External Mode GPIO configured in
the Target + External Mode tab of the Coder Options window.

LAUNCHXL-F28069 LaunchPad

JP1 through JP5 configure the board power isolation. These jumper positions
should be set based on the required isolation settings. JP6 and JP7 configure
the serial communication interface to use GPIO 28 and 29 as the Rx and Tx
signals.

The DIP switches configure the boot mode settings. S1-SW3 should be in the
position pointing away from the MCU chip.

It is important to note that while the TI28069 MCU has two ADC’s, ADCINAx
and ADCINBx, the ADC units are structured with a common results register.
Therefore, when addressing ADCINBx channels, the ADC unit setting should
be “ADC A” and the channel offset by a factor of 8. For example, ADCINB1
should be entered with an ADC unit value of “ADC A” and an Analog input
channel(s) value of 9.

11

l Quick Start

12

LAUNCHXL-F28069 Key Jumper Settings

Jumper Position Purpose
Configure USB/UART

JP6 Open on GPIO 28 and 29
Configure USB/UART

JP7 Closed on GPIO 28 and 29

LAUNCHXL-F28069 Key DIP Switch Settings

Switch Position Purpose

S1-SW1 On/Off GPIO34 logic level f9r
boot mode configuration

S1-SW2 On/Off GPIO37/TDO logic level

for boot mode configuration

TRSTn tied to XDS100v2 for
USB debugger connection

S1-SW3 On

LAUNCHXL-F280049 LaunchPad

JP1 through JP9 configure the board power isolation. These jumper posi-
tions should be set based on the required isolation settings. The LAUNCHXL-
F280049 can be configured with multiple functions set to the same header
pins by adjusting the DIP switch positions. The basic recommended switch
positions are shown below. Refer to the LaunchPad User’s Guide for other pos-
sible configurations.

GPIO 28 and 29 or GPIO 35 and 37 [Rx,Tx] can be used for the External
Mode interface. The switch settings in the table below configure the device
to use GPIO 28 and 29.

Note on the LAUNCHXL-F280049 the XDS110 Debug Probe is only wired to
support 2-pin ¢JTAG mode. This should also be reflected in the ccxml target
configuration file.

Tips for Programming C2000 LaunchPads

LAUNCHXL-F280049 Key Jumper Settings

Jumper Position Purpose

J101-RXD Closed Serial receive isolation
J101-TXD Closed Serial transmit isolation
J101-TMS Closed JTAG test mode select isolation
J101-TCK Closed JTAG test clock isolation

Note that S2 is placed upside-down so the off position corresponds to logic 1
and the on position corresponds to logic 0. Both S2 switches should be ori-
ented towards the MCU chip. S6 should be oriented towards the MCU chip

and S8 away from the MCU.

LAUNCHXL-F280049 Boot Mode DIP Switch Settings

Switch Position Purpose
S2-SW1 Off GPIO 32 boot from flash
S2-SW2 Off GPIO 24 boot from flash
Route GPIO 28 and 29
56 Off to virtual COM port
S8 Off Select GPIO 28 and

29 as serial pins

LAUNCHXL-F2837x LaunchPad

JP1 through JP5 configure the board power isolation. These jumper positions
should be set based on the required isolation settings. Note the F2837x pro-
cessor family has single core and dual core versions. When programming a

dual core chip, the PLECS Coder will only generate code for the first core.

The DIP switches configure the boot mode settings. S1-SW3 should be in the
position pointing away from the MCU chip. For the DIP switch settings be-
low, GPIO 43 and 42 [Rx,Tx] should be used for External Mode communication

13

l Quick Start

14

with the TI28379D MCU and GPIO 85 and 84 [Rx,Tx] should be used for the
the T128377S MCU.

LAUNCHXL-F2837x Boot Mode DIP Switch Settings

Switch Position Purpose
S1-SW1 On/Off GPI084 logic level ff)r
boot mode configuration
S1-SW2 On/Off GPIO72 logic level ff)r
boot mode configuration
S1-SW3 On TRSTn tied to XDS100v2

Note As per TI LAUNCHXL-F28379D Overview, in revision 1.1 of the TI
28379D launchpad, ADCINAZ2 is shorted to VREFHIB. It is recommended that
users avoid using the ADCINAZ2 channel. This is fixed in revision 2.0.

TI C2000 Target Support and the PLECS RT Box

Real-time simulation is a powerful tool to validate embedded control code,
whether hand written or generated using embedded code generation tech-
niques. The PLECS RT Box is the natural choice for real-time simulation
since the offline simulation, real-time model, and embedded control code can
all be derived from a common PLECS model.

Plexim offers a set of interface boards to facilitate the connection of Launch-
Pad and ControlCard development kits from TI. It is important to note that
these interface boards route a digital output of the RT Box to the MCU reset
pin via the RST jumper. If the jumper is closed then a low-level output from
the RT Box will reset the MCU. Do not set this jumper unless you wish to use
this feature, as it will interfere with programming the target processor. The
RT Box provides board power to the LaunchPad device, and therefore the USB
isolation jumpers should be removed when connected to the USB port.

Overview

C2000 Target Support Architec-
ture

As a separately licensed feature, the PLECS Coder can generate C code from
a simulation model to facilitate embedded code generation. Plexim provides
and maintains target support packages for specific processor families. A tar-
get support package enables the PLECS Coder to generate code that is specific
to a particular hardware target such as the TI C2000 family of MCUs or the
PLECS RT Box. With the PLECS Coder and a target support package embed-
ded control code can be generated, compiled, and uploaded to the target device
directly from the PLECS environment with minimal effort. Furthermore, the
embedded control logic can be tested extensively inside the PLECS simulation
environment prior to real-time deployment.

The Embedded Code Generation Workflow

The embedded workflow is designed for you to easily transition from a PLECS
model to an embedded code generation project without having to build and
maintain separate models. A typical embedded code generation workflow con-
sists of the following steps:

1 Design and simulate a controller and plant in PLECS. The controller repre-
sents the application that will run on the embedded target. The plant rep-
resents the hardware connected to the embedded target including the power
stage and other physical systems.

2 2000 Target Support Architecture

16

2 Add components from the target support library to configure the embedded
peripheral devices. Place the controller and peripheral models into a sub-
system representing the embedded target.

3 Run an offline simulation. All peripheral components in the target support
library have behavioral offline models to facilitate the transition from simu-
lation to real-time deployment.

4 Select a discretization step size and nominal control task execution fre-
quency. When generating C code, the PLECS Coder will use the discretiza-
tion step size to automatically transform all continuous states in the con-
troller to the discrete state-space domain using the Forward Euler method.
The control task execution frequency is based on the discretization step size
and specifies the nominal execution rate of the digital control loop.

5 Build the embedded project and flash the MCU using PLECS or Code Com-
poser Studio.

6 Connect to the MCU using the External Mode to test the embedded control
code executing on the embedded target.

Control Task Execution

Embedded applications for power electronics typically sense signals from the
power converter, process the input signals using digital control laws, and out-
put signals to actuation devices. The TI C2000 Target Support Package library
includes components to model and program the MCU peripherals for sensing
and actuation. The control laws are implemented using standard PLECS li-
brary components.

Time synchronization of signal measurement via the analog-to-digital con-
verter (ADC), control logic execution, and actuation via PWM outputs is crit-
ical in the digital power electronic control loop. The TI C2000 Target Support
Package provides the flexibility to configure the ADC and control loop inter-
rupts through the ADC trigger and task trigger signals.

ADC triggers configure the ADC start-of-conversion. The ADC start-of-
conversion is driven by an interrupt from either a PWM carrier or the CPU
Timer. All ADC channels associated with the ADC unit are converted sequen-
tially when the ADC trigger is activated. The order of conversion is based on
the order of the analog input channel vector.

Task triggers are generated by the ADC end-of-conversion signal, PWM
counter underflow and overflow events, or the Timer block. The task trigger

Control Task Execution

that connects to the Control Task Trigger component will periodically trigger
one execution of the digital control loop at the nominal base sample rate.

Additionally, the PLECS Coder and the TT C2000 Target Support Package al-
low the user to generate multi-tasking code for the TI C2000 family of MCUs.
For further information, refer to the "Code Generation" section in the PLECS
User Manual. Multi-tasking code unlocks processing power for controls regu-
lating multiple system outputs with dynamics on a range of time-scales. Using
the Task library component, 15 additional tasks that execute at different rates
(not including the base task) can be specified, preserving processor time for
the fastest, highest priority control task (base task) in the application.

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time.

In a multi-tasking mode, the Control Task Trigger component triggers the
base task associated with the nominal base sample time.

Note In the following sections, unless specified otherwise, control task and
base task can be considered synonymous.

Control Task Accuracy and PWM Frequency Tolerance

The MCU system clock frequency, SYSCLK, fundamentally limits the time
accuracy of the embedded target. SYSCLK is defined in the Target + Gen-
eral tab of the Coder + Coder Options window. The CPU Timer and PWM
carrier generation clocks are derived from an integer number of counts of
SYSCLK. Therefore the time accuracy of task triggers and PWM carriers are
also limited.

Consider the case where there is a desired PWM carrier frequency of 150 kHz
and the SYSCLK is set to 100 MHz. The closest achievable PWM carrier
frequency is 150.15kHz. Note that if the SYSCLK setting was changed to
90 MHz, then the target PWM frequency of 150 kHz could be achieved exactly.

17

https://www.plexim.com/sites/default/files/plecsmanual.pdf
https://www.plexim.com/sites/default/files/plecsmanual.pdf

2 2000 Target Support Architecture

18

In cases where the PWM carrier frequency or ADC and task trigger periods
cannot be achieved exactly, the default behavior is to generate an error mes-
sage displaying the desired frequency or step size and the closest achievable
value. Adjusting the Frequency tolerance parameter overrides this behavior
and configures the PLECS Coder to automatically select the closest achievable
frequency. The Frequency tolerance can be configured in the mask parame-
ters of the Timer, PWM, and PWM (Variable) target support library blocks.

The discretization step size configured in the General tab of the Coder +
Coder Options will also generate an error if the exact step size cannot be
achieved. This impacts the nominal period of the task trigger and introduces
a numerical inaccuracy since C code derived from the model executes at a dif-
ferent rate than was assumed during model discretization. The Frequency
tolerance parameter relating to model and control task discretization can be
adjusted in the General tab of the Coder + Coder Options + Target win-
dow.

Explicit and Implicit Trigger Definitions

The interrupt sequence of the embedded application can be defined explicitly
by connecting trigger signals, or implicitly where the interrupt sequence is au-
tomatically determined based on the components included in the schematic.
Implicitly defined control loops will not have a Control Task Trigger compo-
nent included in the schematic and all ADC trigger sources must be automat-
ically determined. Several possible explicit and implicit trigger sequences are
discussed below.

Note Explicitly defined trigger systems require that the Control Task Trig-
ger’s nominal base sample time parameter agrees with period of the task trig-
ger input signal.

Control Task Execution

Control task triggered by CPU Timer

In a basic project without an ADC or PWM component from the target support
library, the task trigger must be generated by the CPU Timer. The schematic
below shows a simple application where a GPIO is toggled at a fixed rate.

The explicit representation of the control task execution includes a Timer com-
ponent that generates the input signal for the Control Task Trigger. The nom-
inal base sample time of the Control Task Trigger must agree with the CPU
Timer task frequency. In the implicit representation the PLECS Coder will
configure the CPU Timer and Control Task Trigger automatically based on the
Discretization step size parameter set in the Coder + Coder Options +
General menu.

NOT 7T NOT TI,
Digital Digital
1 Out a1 Out
z z

LED LED
gpio:34 gpio:34
LB \pop
Timer
Task————— £)
Timer Cont_rol Task
f: Fdisc Trigger
Explicit Implicit

Figure 2.1: Basic model with control task triggered by CPU Timer

19

2 2000 Target Support Architecture

20

Control task triggered by PWM

Control task execution can be synchronized with the PWM carrier underflow
and overflow events. The task trigger is configured in the Events tab of the
PWM component.

In the explicit representation the PWM task trigger output is connected to
the Control Task Trigger component, such that execution of the digital con-
trol loop will begin when the PWM carrier reaches an underflow (minimum
value) or overflow (maximum value). If the schematic does not include a Con-
trol Task Trigger or an ADC component, then the PLECS Coder will implic-
itly select the most appropriate source for the task trigger. First, the PWM
generator that can achieve the control task frequency with the highest pre-
cision is chosen, starting from the lowest PWM number. If the control task
frequency cannot be achieved exactly using a PWM carrier, then the implicit
trigger logic will determine if more accurate task execution can be achieved
with the CPU Timer. The most accurate source for the control task interrupt
is then selected.

The task trigger will default to triggering on underflow and overflow when the
task trigger is set to disabled in the PWM Events tab and the trigger is im-
plicitly defined.

NOT TI NOT TI
Digital Digital
1 Out Out
z 71

LED LED
gpio:34 gpio:34
TI TI
P P
Tas
pwM Control Task PWM
fc: Fdisc ~ Trigger fc: Fdisc

intsel:Underflow

Explicit Implicit

Figure 2.2: Basic model with control task triggered by PWM

Control Task Execution

Control task triggered by CPU Timer via ADC

If the schematic includes an ADC but no PWM generators, then the ADC
start-of-conversion must be triggered by the CPU Timer. In this case, the con-
trol task can be triggered by the ADC end-of-conversion or the CPU Timer.
When the ADC end-of-conversion is the source of the Control Task Trigger in-
put, as shown in Figure 2.3, then the control loop interrupt will occur after all
ADC results registers are updated with the latest measurement values.

The implicit implementation automatically configures the CPU Timer to pe-
riodically trigger the ADC start-of-conversion. The ADC trigger period is set
by the Discretization step size parameter found in the Coder + Coder Op-
tions + General menu. The ADC unit with the greatest number of channels

will trigger the control task.

Digital Digital
Sl Out] Out
z
g

-y
LED LED
gpio: 34 pio:34

TI
ADC [0.0000

Taskp

Control Task

Trigger

Explicit Implicit

Figure 2.3: Basic model with control task triggered by ADC

21

2 2000 Target Support Architecture

22

Control task triggered by PWM via ADC

Figure 2.4 shows the explicit and implicit implementations of the control task
being triggered by the ADC via the PWM. The sequence of events begins when
the PWM carrier reaches an underflow or overflow triggering the start-of-
conversion signal for the first ADC channel. The ADC channels are sampled
and updated sequentially until the result register of the final ADC channel is
updated. Once all ADC results are available, the ADC end-of-conversion inter-
rupt triggers the control task. This arrangement synchronizes the ADC start-
of-conversion with the PWM actuation and ensures the ADC results registers
are updated prior to executing the control loop.

When both ADC and PWM components are included in any schematic, the
PLECS Coder will implicitly select the the PWM generator with the highest
control task accuracy as the ADC trigger. If the PWM generators cannot trig-
ger the ADC at the exact target frequency, then the CPU Timer will be used
if it is more accurate. The control task will always be triggered by the ADC
end-of-conversion signal.

71 NOT 71
Digital Digital
71 Out 1 Out

LED LED
gpio:34 gpio:34

ADC
PWM PWM
ADC ! Controller WM ADC Controller WM
1
() fc: Fdisc fc: Fdisc

Control Task

; socsel: Underflow
Trigger

Explicit Implicit

Figure 2.4: Basic model with control task triggered by PWM via ADC

Control Task Execution

Advanced explicit configurations

The control task interrupt can execute at integer multiples of the PWM car-
rier frequency, and for a symmetric carrier the control task can be triggered at
twice the PWM carrier frequency.

Figure 2.5 shows a case where the discretization frequency is F;s., the sym-
metric PWM carrier period is Ty, = 2/Fy;sc Hz, and the Control Task Trigger
interrupt period is T¢otri7ask = 1/ Fuisc. The control task is triggered twice per
PWM period. Figure 2.6 shows the corresponding PWM carrier, task trigger,
and PWM outputs.

T/

NOT 7
Out .
2 ! Taskj———(&)

LED PWM Control Task
gpio: 34 fc: Fdisc/2 Trigger
intsel: Underflow and Overflow

Figure 2.5: PWM frequency set to half the control task frequency

Overflow i

-l—CtrlTask/

m
Underflow
ePWMxA
ePWMxB
Task Trigger

Figure 2.6: PWM carrier and task interrupts for PWM frequency set to half the
control task frequency

Figure 2.7 shows a case where the discretization frequency is F;s., the sym-
metric PWM carrier period is Ts,, = 1/(2 - Fy;s.) Hz, and the Control Task
Trigger interrupt is generated at TciriTask = 1/Fuisc- Figure 2.8 shows the
corresponding PWM carrier, task trigger, and PWM outputs.

23

2 2000 Target Support Architecture

24

The C2000 target support package by default will only update the ePWM duty
cycle register on PWM underflow and overflow events to prevent data corrup-
tion. In Figure 2.8 note the delay between the task trigger and the instant
when the duty cycle, m, is updated in the ePWM module. The task trigger ini-
tiates the control task computation, but the modulation index is updated on
the next overflow or underflow event after the entire control task has been
completed. When the control task is triggered by the ADC end-of-conversion,
then the modulation index will update on the next overflow or underflow event
after all ADC channels are converted and the control task is completed.

T/

NOT il
Digital PWM
- Out Task|———(_ £)

LED PWM Control Task
gpio: 34 fc: 2*Fdisc Trigger
intsel: Underflow
intsel_prd: 2

Figure 2.7: Schematic of PWM frequency set to twice the control task fre-
quency

Overflow

T
\Te /.

A

m
Underflow

ePWMxA
ePWMxB L L

Task Trigger

Figure 2.8: PWM carrier and task interrupts for PWM frequency set to twice
the control task frequency

Each ADC can receive independent start-of-conversion triggers from different
PWM generators for phase-shifted sampling. Figure 2.9 shows the case where
the ADC1 component is triggered on the carrier overflow and ADC2 is trig-
gered on carrier underflow from two different PWM modules with a common
carrier frequency. After all channels associated with ADC2 are converted the

Control Task Execution

control task is executed with updated measurements from ADC1 and ADC2.
On the next carrier overflow the ePWM duty cycle register is updated.

NOT 7l
Digital
a Out
z

LED
gpio: 34

T/ i

ADC ADC

PWM PWM

Controller1 | Controller2

ADC1 PWM1 ADC2 : PWM2

fc: Fdisc | fc: Fdisc
socsel: Overflow socsel: Underflow
Control Task
Trigger

Figure 2.9: Explicit phase-shifted ADC sampling

Overflow i

m
Underflow
ePWMXxA
ePWMxB
ADC1 Trigger
ADC2 Trigger
Task Trigger

Figure 2.10: PWM carrier and interrupts for phase-shifted ADC sampling

25

2 2000 Target Support Architecture

26

The Code Generation Project

This section provides additional technical background on the software archi-
tecture of the embedded code generation project included with the TI C2000
Target Support Package. A Code Composer Studio (CCS) project is included
for each supported target chip in the dev/28xx folder of the target support
package. When building the project from directly from the PLECS application,
the files in ¢2000/TI28xx folder of the target support package are used.

Static and dynamic code

The embedded code generation project consists of dynamic and static code. Dy-
namic code is generated by the PLECS Coder and is overwritten each time the
Build button is clicked in the Coder + Coder options... window. Static code
is provided with the target support package and should not be modified. The
PLECS Coder also generates additional dynamic configuration files that are
used by the embedded application.

When the Build type option is set to Generate code into CCS

project then all generated dynamic code must be placed into the
{workspace_loc}/dev/28xx/cg/ of the imported CCS project. If the Build
type parameter is set to Build and program then by default all generated
code is included in a new output directory in the same folder as the saved
PLECS model.

Control and background task dispatching

The application framework includes a rate monotonic scheduler to allow pre-
cise and efficient execution of the digital control loops. The base task is exe-
cuted at the highest priority. Additionally, up to 15 slower lower-priority tasks,
executed at different rates, can be specified. For further information on task
scheduling, refer to the "Code Generation" section in the PLECS User Manual.
A lowest-priority background task also exists to handle non-time critical tasks.
Figure 2.11 shows a configuration with a base task, one additional task, and a
background task executing in real-time on the MCU.

With every control task trigger interrupt issued by the CPU Timer, PWM, or

ADC end-of-conversion (bold vertical bar), any lower priority tasks are inter-

rupted and the base task is executed. This ensures that the control task has

the highest priority. In addition, the lower priority tasks are periodically trig-
gered and executed when no higher priority tasks are active or pending.

https://www.plexim.com/sites/default/files/plecsmanual.pdf

The Code Generation Project

Multi-tasking code generation is configured in the Scheduling tab of the
Coder + Coder options... dialog. By changing the Tasking mode to multi-
tasking and the Task configuration to specify, the sample time for each
task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks
must be an integer multiple of the base sample time. The non-default tasks
can be defined in the model window using the Task library component. An ex-
ample of an additional LED task, along with a base PWM task is shown in
figure 2.12.

Once the base and additional tasks have completed, the system continues with
the background task where lowest priority operations are processed.

I Hv I

Additionaltask 1 | [N M | H N

Backgroundtask | | BN N e

Figure 2.11: Nested control tasks

LED_task
NOT - -
Digital PWM
LED PWM Control Task
gpio: 34 fc: Fdisc Trigger

Figure 2.12: Example of an additional LED task along with a base PWM task

If the base task is still executing when a second control task interrupt is re-
ceived, then the processor will halt and an assertion will be generated. Sim-
ilar behavior occurs if a low priority task does not complete by the time it is
scheduled to execute again. Assertions can be monitored using CCS debug
tools.

27

2 2000 Target Support Architecture

28

Embedded project architecture

Figure 2.13 shows the architecture of the embedded project included with the
TI C2000 Target Support Package. At the top of the software stack is an appli-
cation layer consisting of the main application and the base and additional
tasks. Next, there is a minimal real-time operating system that provides a
rate monotonic scheduler for the nested control tasks, as previously described,
and a processor-in-the-loop (PIL) framework that acts as middleware for Ex-
ternal Mode communication with the PLECS application on the user PC. The
hardware abstraction layer (HAL) provides a hardware agnostic interface be-
tween the application and chip specific configuration settings. This ensures
code portability between different processor platforms. The hardware spe-
cific function calls utilize the TT C2000 drivers to configure the MCU and key
peripherals. At the bottom of the stack is the embedded hardware which in-
cludes the MCU, peripheral devices, and other onboard accessories.

Application Base Task Additional Tasks
main(){ Highest priority task Lower priority tasks
initialization()
CONTROL_INIT
}background[]
Dispatch Routine PIL Framework

Hardware Abstraction Layer (HAL)

TI C2000 Software Library and Drivers

Embedded Hardware

Figure 2.13: Embedded project architecture

TI C2000 Coder Options

The Target page contains code generation options which are specific to the TI
C2000 Target Support Package.

General

Chip Selects the target device chip.

System clock frequency (SYSCLK) Specifies the system clock frequency in
megahertz (MHz).

Use internal oscillator Selects the on-chip oscillator as the clock source.
The clock frequency is automatically specified based on the target device.

External clock frequency Specifies the frequency in megahertz (MHz) of
the external clock source when the internal oscillator is not used.

Step size tolerance The desired control task frequency may not be achiev-
able based on the system clock frequency and the nominal discretization time
step. This setting configures the Coder to either Enforce exact value by gen-
erating an error when the exact control task frequency is unachievable or to
automatically Round to closest achievable value.

Step size tolerance band [%] Specifies the acceptable percent deviation in
frequency from the specified value when the exact control task frequency is
unachievable.

Build type This setting specifies the action of the Build button. Generate
code into CCS project will generate code into the specified Code Composer
Studio (CCS) project. CCS must then be used to build the project and flash
the MCU. The Build and program option will automatically build and flash
the target device from within PLECS using the provided Build configura-
tion and Board type.

3 11C2000 Coder Options

30

CCS project directory Specifies the target folder for code generation. The
code must be generated into a pre-configured CCS project. When using the
CCS project templates provided with the C2000 target support package, code
must be generated into the {workspace_loc}/dev_28xx/cg folder where
{workspace_loc} refers to the location of the imported project in the CCS
workspace.

Build configuration Provides an option to either Run from Flash or Run
from RAM.

Board This setting allows selecting preconfigured UniFlash target config-
urations. If using either a TI LaunchPad or a TI controlCARD, LaunchPad or
ControlCard should be selected. If using a Custom board instead, a custom
UniFlash target configuration file must be provided.

UniFlash target configuration Defines the .ccxml target configuration file
for custom boards. The target configuration file can be generated from TI Uni-
Flash or from CCS.

PGA

This tab allows for the configuration of the Programmable Gain Amplifiers
that are present on 28004x devices. Each unit can be enabled and configured
in terms of its gain and filter resistance.

Protections

Digital and analog inputs can be configured on this tab to generate trip events
for the Powerstage Protection block. Note that in order for a protection input
to have an effect it has to be explicitly activated in the Powerstage Protection
(see page 52) block.

Digital trips

Up to three trip zone digital input can be enabled and configured. Digital trips
are active low inputs, i.e. a logical low input will activate the trip zone logic.

Analog trips

For targets with CMPSS peripherals, up to 4 analog window comparators can
be enabled and configured for generating trip signals for the Powerstage Pro-
tection block. Both ADC and PGA pins may be selected as protection inputs,
as long as they have an internal connection to a CMPSS comparator module.
The comparator is automatically determined by PLECS and an error message
is issued in case no suitable comparator is found.

The user can configure both an upper and lower threshold. A trip signal is
generated if the input falls below the lower threshold or exceeds the upper
threshold. Note that it is allowable to set the lower threshold to 0.0 V, or the
upper threshold to 3.3 V, thereby eliminate one of the trip regions. Each ana-
log trip can be configured to emit one of three specific trip signals (labeled A,
B, or C). A particular trip signal may be emitted by multiple analog trip in-
puts.

Input type Choose between ADC input or PGA input as protection inputs.
This parameter is only shown for targets that feature PGA inputs.

ADC unit Selects the peripheral index for the ADC input when there are
multiple ADC submodules.

ADC input channel Index of the analog input channel for a specific ADC
submodule to be used as the protection input.

PGA unit Selects a Programmable Gain Amplifiers input (not available on
all devices).

Upper threshold voltage Configures the upper threshold in volts (V). A
value of 3.3 V is allowed to eliminate one of the trip regions.

Lower threshold voltage Configures the lower threshold in volts (V). A
value of 0.0 V is allowed to eliminate one of the trip regions.

Emit trip signal Configures to emit one of three specific trip signals: A, B, or
C.

External Mode

These options are used to configure the External Mode communication with
the target device.

Enable External Mode This setting adds code to the target device that en-
ables the External Mode. Code size and memory consumption are increased
when the External Mode is enabled.

31

3 11C2000 Coder Options

32

Target buffer size Specifies how much target memory (16-bit words of
RAM) should be allocated to buffering signals for the external mode. The
number of words NN,, required by the external mode can be calculated as fol-
lows: Ny = Ngignais - 2 - (Nsamples + 1). If more samples are requested than
what is supported by the memory allocation, PLECS will automatically trun-
cate the scope traces to the maximal possible Ny pics Value. Note, however,
that requesting more memory than what is available on the target will result
in a build error. Recommended values for this setting are in the range of [500
...2000].

GPIO [Rx/Tx] Specifies the GPIO pins used for the External Mode SCI con-
nection. These GPIO pins cannot be used by other peripherals.

TI C2000 Target Support Li-
brary Component Reference

This chapter lists the contents of the TI C2000 Target Support library in al-
phabetical order.

4 1 co000 Target Support Library Component Reference

34

ADC

Purpose
Library
Description

7/ IS

ADC P
Taskp

Parameters

Output the measured voltage of the ADC peripheral
TI C2000

This block configures the ADC peripheral as a single-ended input with an in-
ternal voltage reference. The ADC block output signal represents the mea-
sured voltage at the ADC pin. The output is scalable and can be used with
an offset, where the output signal is calculated as input*Scale+Offset. When
the Analog input channel(s) parameter is vectorized, each input channel is
measured sequentially in the order of the input channel vector.

The Trigger source parameter selects between an automatic or external
ADC start-of-conversion signal, where the external start-of-conversion signal
is connected to the ADC trigger port. If the ADC task output is the source of
a Control Task Trigger then the control task will execute once the last ADC
channel is converted.

Main

Trigger source
Selects an automatic or external start-of-conversion trigger.

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

Analog input channel(s)
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

Scale(s)
A scale factor for the input signal.

Offset(s)
An offset for the scaled input signal.

Acquisition time
Selects between a minimal or user specified ADC acquisition time.

Acquisition time value(s)
Sets the ADC acquisition time window in seconds.

ADC

Offline only

Resolution
The resolution of the offline ADC model in bits. The resolution is applied
over the voltage reference range. If the parameter is left blank ADC quan-
tization is not modeled.

Voltage reference
The voltage range of the offline ADC model used to determine the ADC
resolution.

35

4 1 co000 Target Support Library Component Reference

CAN Port

Purpose Set up a CAN communication port
Library TI C2000
Description The block sets up a CAN (Controller Area Network) communication port.

The input en determines the CAN port state. Setting en to zero will force the
CAN port to the bus-off state, while setting the port to 1 allows the CAN port
to transition to bus-on. If Auto bus-on is not enabled, a bus-off condition has
to be cleared by setting the enable signal to 0, and then back to 1.

Error Modes

The output on is 1 to signal bus-on status, 0 otherwise. The output ea is 1 to
signal error active status, 0 otherwise.

All nodes on a CAN bus detect errors and maintain two error counters: a
Transmit Error Counter and a Receive Error Counter. Each node can be in one
of the following 3 error modes:

¢ error active This is the start mode of all the nodes, when both error coun-
ters are less than 128. In this mode, a node fully participates in bus com-
munication and transmits an active error flag when it detects errors.

* error passive When one of the two error counters is greater than 127, a
node goes into error passive mode. In this mode, a node still participates in
bus activities, but transmits a passive error flag when it detects errors.

¢ bus-off When the Transmit Error Counter is greater than 255, a node goes
into a bus-off mode. When in this mode, the node is disconnected from the
bus and can no longer participate in bus activities.If Auto bus-on is not en-
abled, a bus-off condition has to be cleared by setting the enable signal to 0,
and then back to 1. After recovering from bus-off condition, both the error
counters are reset to 0 and the node goes into error active mode.

Parameters CAN interface
Selects the CAN interface to use.

Baud rate
Defines the baud rate that is used on the connected CAN bus. All devices
on a CAN bus must be configured to use the same baud rate.

GPIO [Rx, Tx]
Specifies the GPIOs to use for CAN communication. Each CAN channel
requires one receive (Rx) and one transmit (Tx) pin.

36

CAN Port

Auto bus-on
The Auto bus-on feature, if enabled, will automatically clear a bus-off con-
dition, without the need for setting the enable signal en to 0, and then
back to 1.

37

4 1 co000 Target Support Library Component Reference

38

CAN Receive

Purpose
Library

Description

Parameters

Receive CAN messages
TI C2000

The block initiates the reception of CAN messages with the given identifier
(ID) on the given CAN interface. On reception of a CAN message the data is
made available on the block output d as a vectorized signal of the provided
frame length. The output v is 1 in for one simulation step when new data is
received, 0 otherwise.

CAN interface
Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 36) block.

CAN ID source
Selects whether the CAN ID is specified as a parameter or is supplied as
an input signal.

CANID
The ID for which the block receives CAN messages. The CAN ID can be
supplied as either a 11-bit value (for CAN 2.0A) or a 29-bit value (for CAN
2.0B).

Frame format
Specifies the frame format that is used when filtering for matching CAN
messages. Possible values are:

¢ Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 2'!, or 2048 different message identifiers.

¢ Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 229, or 537 million identifiers.

¢ Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Frame length
Specifies the frame length of the CAN message in bytes.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

CAN Transmit

CAN Transmit

Purpose
Library

Description

T/
id CAN A
d Tx

Parameters

Transmit CAN messages
TI C2000

The CAN Transmit block sends out data on a CAN bus. The data to send
must be provided on the block input d as a vectorized signal with data type
uint8. The length of the transmitted CAN message is determined by the
width of the input signal (1 to 8 bytes).

Messages are either sent regularly with a fixed sample time or on demand
when the trigger input changes. When configured for triggered execution, mes-
sages are sent when the trigger signal changes in the manner specified by the
Trigger type parameter:
rising

Data is sent when the trigger signal changes from 0 to a non-zero value.

falling
Data is sent when the trigger signal changes from a non-zero value to 0.

either
Data is sent when the trigger signal changes from 0 to a non-zero value or
vice versa.

CAN interface
Selects the CAN interface to use. The selected CAN interface must be con-
figured using a CAN Port (see page 36) block.

CAN ID source
Selects whether the CAN identifier (ID) is specified as a parameter or is
supplied as an input signal.

CAN ID
The ID that is used for CAN messages sent by this block. The CAN ID can
be supplied as either an 11-bit value (for CAN 2.0A) or a 29-bit value (for
CAN 2.0B).

Frame format
Specifies the frame format of the CAN messages to be transmitted. Possi-
ble values are:

¢ Standard CAN for CAN 2.0A messages with an 11-bit ID. The standard
11-bit ID provides for 2'!, or 2048 different message identifiers.

39

4 1 co000 Target Support Library Component Reference

40

¢ Extended CAN for CAN 2.0B messages with an 29-bit ID. The extended
29-bit ID provides for 22°, or 537 million identifiers.

* Auto uses the Standard format if the specified CAN ID is smaller than
2047. Otherwise, the Extended format is used.

Execution
Selects between regular and triggered execution.

Trigger type
The direction of the edges of the trigger signal upon which the data is
sent, as described above (for triggered execution only).

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-

able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

Control Task Trigger

Control Task Trigger

Purpose
Library

Description

Parameters

Specify the base sample time and trigger for the main control task
TI C2000

The digital control loop executes at a nominal base sample time. The input to
the Control Task Trigger specifies the interrupt that triggers a control loop ex-
ecution. The source of the interrupt can be from the ADC end-of-conversion
signal, PWM counter underflow and overflow events, or the Timer block.
When a Control Task Trigger is not included in the subsystem an appropriate
trigger source is automatically determined.

In a multi-tasking mode (defined in the Scheduling tab of the Coder Options
dialog), the Control Task Trigger block triggers the Base task associated with
the base sample time.

The offline simulation will model the impact of controller discretization when
the Control Task Trigger is included. For offline simulations the Forward Eu-
ler method with the nominal base sample time is used to integrate continuous
states within the subsystem containing the Control Task Trigger. Offline sim-
ulations will use the default subsystem execution settings when the Control
Task Trigger block is not included in the subsystem.

Nominal base sample time
Specifies the nominal sample time of the discretized model in seconds.
The nominal base sample time value is synchronized with the model Dis-
cretization step size of the PLECS Coder settings.

41

4 1 co000 Target Support Library Component Reference

CPU Load

Purpose Provide the CPU load in percent
Library TI C2000
Description This block outputs the percentage of time that is used by the control task with
one interrupt period. In case of multi-tasking, the output corresponds to the
T/ Base task load, and does not include the load created by additional lower-
CPU | priority tasks.
Load

42

DAC

DAC

Purpose

Library

Description

T/
DAC

Parameters

Generate an output voltage from the input signal; the output voltage is calcu-
lated as input*Scale+Offset

TI C2000

This block generates a voltage on the DAC pin in the range of 0V to 3.3 V. The
output is scalable and can be used with an offset, where the output signal is
calculated as input*Scale+Offset. Output voltage limitations can also be set.

DAC Unit
Selects the peripheral index for the DAC input when there are multiple
DAC submodules.

Scale
A scale factor for the output signal.

Offset
An offset for the scaled output signal.

Minimum output voltage
The lowest value that the output voltage can reach.

Maximum output voltage
The highest value that the output voltage can reach.

43

4 1 co000 Target Support Library Component Reference

44

Digital In

Purpose
Library

Description

7/
Digital

In

Parameters

Read a digital input
TI C2000

The output signal is 1 if the input voltage is higher than the high level input
voltage threshold, V;y, and 0 if it is lower than the low-level input voltage,
V1. For other input voltages the output signal is undefined. Refer to the de-
vice data sheet for the electrical characteristics of a specific target. During an
offline simulation the block behaves like a simple feedthrough.

Digital input GPIO resource(s)
Defines the GPIO resource of the digital input channel. For vectorized in-
put signals a vector of input channel indices must be specified.

Input characteristic
Specifies whether an internal Pull-up resistor is connected to the digital
input.

Digital Out

Digital Out

Purpose
Library

Description

7/
Digital

Out

Parameters

Set a digital output
TI C2000

The output is set low if the input signal is zero and is set high for all
other values. During an offline simulation the block behaves like a simple
feedthrough.

Digital output GPIO resources(s)
Defines the GPIO resource of the digital output channel. For vectorized
output signals a vector of output channel indices must be specified.

Output characteristic
Specifies whether an internal Push-pull or Open drain resistor is con-
nected to the digital output.

45

4 1 co000 Target Support Library Component Reference

46

External Sync

Purpose
Library

Description

T/
External .
Sync

Parameters

Set up an external synchronization port for PWM output
TI C2000

The PWM (Variable) block can synchronize the PWM carrier phase with an
external GPIO signal. This block is used to model the external synchroniza-
tion input in offline simulations, and to specify the GPIO pin used for PWM
synchronization when generating code.

Note that the number of allowable External Sync blocks is limited according
to the hardware capabilities of the target MCU.

External GPIO
Defines the GPIO used to synchronize the PWM with an external source.

Override Probe

Override Probe

Purpose Allow modifying input value during a PIL simulation
Library TI C2000
Description During a PLECS processor-in-the-loop (PIL) simulation, an Override Probe
allows PLECS to overwrite variables in the embedded code.
il For further details on the PIL simulation, refer to the PIL User Manual.
Override},
Probe

47

https://plexim.com/sites/default/files/pilmanual.pdf

4 1 co000 Target Support Library Component Reference

48

Peak Current Controller

Purpose
Library

Description

T/
Ipk

Controller

Parameters

Implement peak current control with ramp compensation
TI C2000

The Peak Current Controller (PCC) block implements peak current control
with slope compensation. This block is supported on 280049 and 28379D
MCUs.

In a peak current-mode controller, at the beginning of each switching cycle the
output is set (gate signal is turned ON) without a pre-determined duty cycle.
Then, when the sensed inductor current exceeds the peak current reference
value, the output is reset (gate signal is turned OFF). The duty cycle is there-
fore determined by the rise of the inductor current during the on-time.

One of the drawbacks of the peak current-mode controller is that it suffers
from an inherent instability if the applied PWM duty cycle is greater than
50%. This is explained in the figure titled “Slope compensation”. If a small
disturbance is introduced into the system and if the applied duty cycle is less
than 50%, the disturbance eventually decays to zero. However, if the applied
duty cycle is greater than 50%, the inductor current will start to diverge and
will no longer be stable. The resulting duty cycle values will vary from small
to large, on an alternating cycle basis, called sub-harmonic oscillations. To
limit these sub-harmonic oscillations, instead of providing a constant peak cur-
rent reference, additional slope compensation is applied, which then ensures
the stability of the inductor current.

Internally, the PCC block makes use of multiple MCU peripherals. The first
component is a DAC that provides a peak current set-point including ramp,
for controlling the inductor current. The second is a comparator (COMP); the
sensed current is fed to the comparator, which is then compared to the peak
current set-point provided by the DAC. The output of the COMP block is fed
to the third component, which is the PWM generator. The PWM generator
generates the PWM waveforms at the specified frequency.

Main

PWM generator
Selects the index of the PWM resources to use. The PWM generator can
independently generate a single PWM output or a complementary PWM
pair.

Peak Current Controller

desired inductor current
projected inductor current
—— peak current reference

without slope compensation
| | | | |

| |
duty < 0.5 i }
I
duty > 0.5
with slope compensation \
duty > 0.5 | I I
‘ 1 \ \
| /\ | |
| | | |

Slope compensation

Peak Current Controller \

PWM outputs

eak current reference
DAC veith slope compensation

>

Ipk

—_—
sensed currents

\I\N =< Ramp reset
Ram
genergtor /

Peak current controller schematic

Carrier frequency
Defines the switching frequency of the output signal in Hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable

49

4 1 co000 Target Support Library Component Reference

50

based on the system clock frequency.

Sense input
Selects the desired sense input: ADC input or PGA input.

ADC unit
Selects the peripheral index for the ADC input when there are multiple
ADC submodules.

ADC input channel
Index of the analog input channel for a specific ADC submodule. For vec-
torized input signals a vector of input channel indices must be specified.

PGA unit
Configures the Programmable Gain Amplifiers that are present on 28004x
devices.

Current sense gain
Scales the peak current reference (/i) into values with physical units to
be used for the control algorithm.

Ramp slope
Defines ramp slope rate in Amperes per second (A/s). Slope compensation
can be applied to ensure stability when the output duty cycle exceeds 50%.
Entering a parameter, I,,mp, reduces I,x during each switching cycle as
follows: Ilgk = Ik — Lramp - t, Where t is the time elapsed from the start of
the switching cycle. Slope compensation can be omitted by setting I.amp to
0.

Ramp offset
Defines ramp offset in Amperes (A).

Leading edge blanking time
This sets the minimum output on time at the beginning of each switching
period in seconds (s). Leading edge blanking time is used to prevent the
turn-on transient current from triggering the peak current controller.

Output

Mode

¢ Complementary outputs operates channels A & B in complementary
fashion with blanking time.

¢ Single output (channel A) only modulates channel A and allows the
GPIO of channel B to be used for other purposes.

Peak Current Controller

Blanking time
Delay between the rising and falling edges of a complementary PWM out-
put pair in seconds (s).

Polarity
Defines the logical output of the ePWMxA output when an active state is
detected. The active state occurs when the modulation index exceeds the
carrier. Note that ePWMxB is always complementary to ePWMxA.

Events

ADC trigger
Configures the ADC trigger output.

ADC trigger divider
Determines how many events need to occur before an ADC trigger is gen-
erated.

Task Trigger
Configures the control task trigger output.

Task trigger divider
Determines how many events need to occur before a Task trigger is gener-
ated.

Offline only

System clock frequency (SYSCLK)[MHz]
Defines the system clock frequency in MHz for offline simulations. For
real-time simulations, the PCC block uses the system clock frequency pa-
rameter specified in the Target tab of the Coder Options dialog.

51

4 1 co000 Target Support Library Component Reference

52

Powerstage Protection

Purpose
Library

Description

7/
Powerstage
en

Protection

Provide powerstage safety features
TI C2000

The Powerstage Protection block implements an interlock, which is a safety
mechanism, to enable or disable all the PWM outputs on the target device.
The PWM outputs are disabled unless there is a logical low to high transition
on the input signal, labeled en. This prevents the PWM signals from becom-
ing active as soon as the code is executed on the target, thereby ensuring safe
operation.

Additionally, there is an option to configure a GPIO (digital output) as a pow-
erstage enable signal. This signal can then be used, for example, to provide an
enable signal to external gate driver chips. The enable polarity of the output
GPIO pin, specified in the Powerstage enable GPIO number can be defined
as:

¢ Active low: a logical low to high transition on the input signal, en, sets the
GPIO pin to logic low (0).

¢ Active high: a logical low to high transition on the input signal, en, sets
the GPIO pin to logic high (1).

To reiterate, the powerstage enable signal is an output signal of the Power-
stage Protection block. This signal does not contribute to enabling or disabling
PWM outputs, and can be considered as a status indicator of the Powerstage
Protection interlock state. Irrespective of the configuration of this signal (Dig-
ital output or None), the Powerstage Protection block, if included in the
schematic, disables all the PWM outputs on the target device, unless there

is a logical low to high transition on the input signal, labeled en.

If the Powerstage Protection block is omitted from the schematic, then all
PWM outputs will be continuously enabled.

Protection

Digital trips: The trip zone submodule can be used to disable the power-
stage and associated PWM blocks following a trip event. Trip events are de-
tected when there is an active low condition on the trip zone GPIO inputs as-
signed in the Protections tab of the Coder + Coder Options + Target win-
dow. When a trip event is detected the Powerstage Protection module can take

Powerstage Protection

no action, activate a one-shot trip event, or activate a cycle-by-cycle trip
event. A one-shot trip event will latch the PWM output to the PWM safe state
and can only be cleared by cycling the Powerstage Protection block from dis-
abled to enabled. Cycle-by-cycle trip events will set the PWM output to the
PWM safe state until the PWM counter reaches an underflow event. At the
PWM counter underflow the trip condition will be cleared if the trip zone in-
put is no longer active. The cycle-by-cycle trip event will attempt to clear the
trip condition once per PWM cycle. The PWM safe state is a configuration of
the Powerstage Protection block.

Analog trips: Each analog trip can be configured in the Protections tab

of the Coder + Coder Options + Target window to emit one of three spe-
cific trip signals (labeled A, B, or C). When a trip signal is detected the Power-
stage Protection module can take no action or activate a one-shot trip event.
A one-shot trip event will disable the powerstage (setting the PWM outputs to
the configured PWM safe state). All trip events are latched and can only be
cleared by cycling the Powerstage Protection block from disabled to enabled.

Parameters
Main

Powerstage enable signal
Provides an option to configure a GPIO (digital output) as a powerstage
enable signal.

¢ Digital output: Configures a GPIO (digital output) as a powerstage enable
signal. This signal can then be used, for example, to provide an enable sig-
nal to external gate driver chips. This signal can be considered as a status
indicator of the Powerstage Protection interlock state.

* None: Powerstage enable signal is not configured.

Powerstage enable polarity
Defines the polarity of the powerstage enable signal.

¢ Active low: a logical low to high transition on the input signal, en, sets the
GPIO pin to logic low (0).
¢ Active high: a logical low to high transition on the input signal, en, sets
the GPIO pin to logic high (1).
Powerstage enable GPIO number
Defines the GPIO pin to be configured as the powerstage enable signal.

PWM safe state
Specifies the forced PWM output state when a trip zone is triggered. Se-
lecting the forced inactive option drives all associated PWM outputs the

53

4 1 co000 Target Support Library Component Reference

54

passive state. Selecting the floating option sets the associated PWM out-
puts to a high impedance state.

Protection

Reaction to TZ1
Selects the action following a digital trip zone event.

Reaction to TZ2
Selects the action following a digital trip zone event.

Reaction to TZ3
Selects the action following a digital trip zone event.

Reaction to trip signal A
Selects the action following an analog trip event detection.

Reaction to trip signal B
Selects the action following an analog trip event detection.

Reaction to trip signal C
Selects the action following an analog trip event detection.

Offline only

Interlock
For convenience, the interlock can be enabled or disabled for offline simu-
lations.

¢ Select Simulate to enable the simulation of the interlock safety mecha-
nism. The output of the the Powerstage Protection block in the top-level
schematic is disabled unless there is a logical low to high transition on the
input en.

* Select Do not Simulate to disable the simulation of the interlock mech-
anism. The output of the the Powerstage Protection block can then be en-
abled at the start of the simulation by tying en to 1.

Pulse Capture

Pulse Capture
Purpose Time-stamp edges of a pulse train
Library TI C2000
Description The capture blocks allows time-stamping signal transitions (events) on in-
put pins, e.g. for period and/or duty cycle measurements. The timestamps are
Z/ ob made available on the block output c.
CAP vp1
o1 The output v is 1 for one simulation step after all events have been triggered,

0 otherwise. The output o is set to 1 should the timestamp counter overflow.
After a counter overflow, the counter resets to 0 and continues to count up.
The output o is automatically cleared after it has been read.

Events can be captured individually for either absolute time-stamp mode or
time-difference mode.

In absolute time-stamp mode, the timestamp counter continues incrementing
after the capture event occurs.

In time-difference mode, the timestamp counter is reset when the event occurs.

This feature simplifies determining elapsed time between events.

Depending on the eCAP type, the behavior of the capture block can vary.
There are three eCAP types: Type-0, Type-1 and Type-2.

With Type-0 eCAP, as implemented in TI2806x, TI2833x and TI2837x MCUs,
the reset actions of events continue even after a full set of events is received.

With Type-1 eCAP, as present on TI28004x MCUs, once a full set of events is
received, the reset actions of events do not continue. The counter will there-
fore count-up without resetting until after the next model step, when the cap-
ture results are read and the module is re-armed, resulting in a large count
value for the first event.

Type-2 eCAP, as present on TI2838x MCUs, behaves like Type-1 eCAP from a
reset event perspective.

The figure below illustrates this with an example for the three events de-
scribed in the following table:

55

4 1 co000 Target Support Library Component Reference

Event Trigger | Reset Counter | CAP Output
Event 1 (E1) | Falling True C1
Event 2 (E2) | Rising False C2
Event 3 (E3) | Falling True C3
< tCaptm'e >
Model Step tpuise
Pulse Input _J 4 J '_' _J I_' I,__
El E2 E3 El E2 E3
Type_o C1 C3 C1 .C3
CAP Output ///"cz/‘//////"cz/‘/////
Pulse Input _J J J N
El E2 E3 El E2 E3
C1 C1
Type-l 1 A //
Type-2 yd e
CAP Output C3 ye C3 g
/'{‘/ /'{‘/

An illustrative example of Type-0 and Type-1 CAP outputs

In the figure above, tcapture 1 the execution step size of the eCAP block and
tpulse 18 the period of the captured pulse train.

In case of Type-0 eCAP, even after the full set of events E1, E2 and E3 are
received, the reset actions for the next set of events within the same model
step continue. Therefore, in this case, the outputs C1 and C3 are the same.

In case of Type-1 and Type-2 eCAP modules, once the full set of events E1, E2
and E3 are received, the counter continues to count-up until the next trigger
event in the next model step, resulting in a large value for C1.

Parameters

56

Pulse Capture

Main

CAP module
Selects the eCAP module to use.

Input GPIO number
Defines the GPIO pin number associated with the chosen eCAP module.

Prescaling
Provides an option to disable or enable prescaling an input capture sig-
nal (pulse train).

Prescale value
Specifies the desired prescale value. A pulse train can be prescaled by N =
2-62 (in multiples of 2).

Events

Event
Provides an option to define four capture events. Polarity can be set to
trigger on Rising or Falling edge. Unused events can be Disabled.

Reset counter on Event
Events can be captured in absolute time-stamp mode with reset counter
set to false or in time-difference mode with reset counter set to true.

Offline only

System clock frequency (SYSCLK)[MHz]
Defines the system clock frequency in MHz for offline simulations. For
real-time simulations, the capture block uses the system clock frequency
parameter specified in the Target tab of the Coder Options dialog.

eCAP type
Allows choosing either a Type-0 or a Type-1 and above eCAP behavior for
offline simulation.

57

4 1 co000 Target Support Library Component Reference

PWM

Purpose
Library

Description

58 Parameters

Generate a complementary PWM signal pair

TI C2000

The PWM block generates a single or complementary PWM pair on one or
more PWM resources. The modulation index for each channel must be pro-
vided via the input signal, which is a vectorized signal if the block uses mul-
tiple channels. The carrier starts at 0 and varies between 0 and 1. During an
offline simulation it behaves as a normal PWM generation block.

The PWM block can configure independent interrupts to trigger the ADC
start-of-conversion and the Control Task Trigger. Interrupts are synchronized
with the PWM carrier and will occur at the carrier underflow, overflow, or un-
derflow and overflow events. Underflow and overflow events correspond to
PWM carrier reaching the respective carrier minimum or carrier maximum
values.

The figure below shows an example of a symmetric PWM carrier with the task
trigger set to underflow, the ADC trigger set to overflow, and the polarity con-
figured with an active state logic of ‘1’.

Overflow ™

m
Underflow
ePWMXxA
ePWMxB
ADC Trigger
Task Trigger

PWM and trigger schemes for symmetric carrier

PVWM

Main

PWM generator(s)
Index of the PWM resources. For vectorized output signals a vector of out-
put channel indices must be specified.

Carrier type
Selects the carrier waveform, either sawtooth or symmetrical.

Carrier frequency
Defines the frequency of the carrier in hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable
based on the system clock frequency.

Blanking time
Delay between the rising and falling edges of a complementary PWM out-
put pair in seconds (s).

Polarity
Defines the logical output of the ePWMxA output when an active state is

detected. The active state occurs when the modulation index exceeds the
carrier. Note that ePWMxB is always complementary to ePWMxA.

Output

Mode

* Complementary outputs operates channels A & B in complementary fashion
with blanking time.

* Single output (channel A) only modulates channel A and allows the
GPIO of channel B to be used for other purposes.

® Qutputs disabled does not generated any PWM outputs. The GPIO of both
channels remain free to be used for other purposes.

Blanking time
Delay between the rising and falling edges of a complementary PWM out-
put pair in seconds (s).

Polarity
Defines the logical output of the ePWMxA output when an active state is
detected. The active state occurs when the modulation index exceeds the
carrier. Note that ePWMxB is always complementary to ePWMxA.

Sequence

59

4 1 co000 Target Support Library Component Reference

60

* A Positive sequence corresponds to the PWM pattern as before, which
starts channel A with the active state.

* The Negative sequence starts channel A with the passive state, resulting
in a pattern that is phase shifted by 180 degrees compared to the positive
sequence.

* An additional component port is created if Sequence is set to Variable. Ap-
plying a signal > 0 to this port sets the sequence to positive.

Enable port
An additional component port is created if Enable port is set to Show. Ap-
plying a signal = 0 to this port sets the PWM channel(s) to passive.

Events

ADC trigger
Configures the ADC trigger output.

ADC trigger divider
Determines how many events need to occur before an ADC trigger is gen-
erated.

Task Trigger
Configures the control task trigger output.

Task trigger divider
Determines how many events need to occur before a Task trigger is gener-
ated.

Deprecated

This tab contains deprecated settings and is normally disabled.

PWM (Variable)

PWM (Variable)

Purpose Generate a complementary PWM signal pair with a variable phase shift, vari-
able frequency and synchronization options

Library TI C2000

Description The PWM (Variable) block generates a complementary PWM pair on a group-
ing of one to three PWM channels that share a common synchronization im-
pulse. The modulation index for each channel must be provided via the input
signal m, which is a vectorized signal if the block uses more than one PWM
channel. The carrier starts at 0 and varies between 0 and 1. The phase shift
between the carriers of the individual PWM channels can be controlled with
the vectorized input signal ph’. Each element of ph’ specifies the phase delay
of the PWM carrier with the same index. The delay is given in p.u. of the car-
rier period and must lie between 0 and 1.

The carriers of PWM resources are connected to a common synchronization
signal, configured in the Sync + Synchronization impulse from setting.
The synchronization signal can come from carrier zero count of the first PWM
resource of the block, from another PWM (Variable) block, or from an exter-
nal source using a GPIO pin. When an external GPIO synchronization signal
is used an External Sync block is required. Each PWM (Variable) block also
has a synchronization output that can be connected to other PWM (Variable)
blocks.

Each group of PWM generators has the first channel configured as the master
and the other channels configured as slaves. When a synchronization impulse
is received, the master transmits a synchronization signal to the slaves of the
same block and other PWM (Variable) blocks connected to the blocks synchro-
nization output signal. When this happens, the ramp generators of the slaves
are set to their initial values computed from the input signal ph’ to achieve
the desired phase shift.

The first element of the input signal ph corresponds to the phase delay of the
master channel and is relevant only when the synchronization source is an-
other PWM (Variable) block or an external GPIO. The phase delays between
multiple PWM (Variable) blocks are only accurate if the blocks have a common
Carrier frequency.

61

4 1 co000 Target Support Library Component Reference

62

Parameters

AVAVYYY:

" VoV VN

f 1 X 2
ePWM1A 1 1 | I I N
ePWM1B _| LI L I L7 LI L

PWM with frequency variation

Configure the Frequency variation parameter to enable the frequency input
port f’. The figure above shows an example of the symmetric PWM carrier
with frequency variation. The output frequency is given by f/ multiplied by
the Carrier frequency parameter. Note that all PWMs channels within one
PWM (Variable) block share the same frequency input.

Note that the variable frequency operation with synchronized and phase-
shifted units can only be achieved on the newer TI processors, but not the TI
28335 and 28069 devices. On the TI 28335 and 28069 devices, either the vari-
able frequency port (f’) can be enabled or a non-zero phase-shift (ph’) can be
configured, but not both at the same time.

The PWM (Variable) block can configure independent interrupts to trigger the
ADC start-of-conversion and the Control Task Trigger. Interrupts are synchro-
nized with the master channel PWM carrier and will occur at the carrier un-
derflow, overflow, or underflow and overflow events. Underflow and overflow
events correspond to PWM carrier reaching the carrier minimum and carrier
maximum values.

Main

Number of synchronized PWMs
The number of PWMs synchronized to a common interrupt.

Group of 3 PWM generator(s)
Selects the PWM resources that share a common interrupt.

Carrier type
Selects the carrier waveform, either sawtooth or symmetrical.

PWM (Variable)

Carrier frequency
The frequency of the carrier in hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired carrier frequency is not achievable
based on the system clock frequency.

Blanking time
Delay between the rising and falling edges of a complementary PWM out-
put pair in seconds (s).

Polarity
Defines the logical output of the ePWMxA output when an active state is
detected. The active state occurs when the modulation index exceeds the
carrier. Note that ePWMxB is always complementary to ePWMxA.

Frequency variation
Enables or disables the frequency input port.

Sync

Synchronization impulse from
Selects the source of the synchronization impulse. When self synchroniza-
tion is chosen, the phase shift of the first allocated PWM resource has no
impact.

Events

ADC trigger
Configures the ADC trigger output.

Task Trigger
Configures the control task trigger output.

Deprecated

This tab contains deprecated settings and is normally disabled.

63

4 1 co000 Target Support Library Component Reference

64

Quadrature Encoder Counter (QEP)

Purpose
Library

Description

Parameters

Count edges of a quadrature pulse train
TI C2000

The Quadrature Encoder Counter counts edges which are generated from a
quadrature encoder. The A, B, and I outputs of the encoder are connected to
the QEP inputs of the C2000 target.

The block outputs the current counter value (c), the index pulse (i), and the
latched counter value from the previous index pulse (ic).

The counter counts up or down depending on the sequence of input pulses.
The counter value will increase when the direction of rotation results in the
rising edge of B following the rising edge of A and will decrease in the oppo-
site direction of rotation. For each rising and falling edge of the A and B en-
coder output signals the counter will increment or decrement. Therefore the
Maximum counter value must match the number of line pairs of the en-
coder multiplied by the number of counted edges per line pair minus 1. As
an example, an encoder with 1024 line pairs would have a maximum count
of 4095 since the QEP module counts all edges of A and B.

Once the counter reaches the value specified in parameter Maximum
counter value it is reset to zero on the next detected edge in the positive di-
rection. Vice versa, the counter is set to Maximum counter value when it is
zero and detects an edge in the negative direction. If connected and configured
by the Counter reset method parameter, the counter is also reset when the
rising edge of the index input is detected.

QEP module
Selects the QEP peripheral module used.

GPIO numbers
Defines the A,B, and I GPIO pins assigned to the chosen QEP module.

Maximum counter value
The counter is reset to zero when it has reached the Maximum counter
value and detects an input edge in the positive direction. The counter is
set to the Maximum counter value when it is zero and detects an input
edge in the negative direction.

Counter reset method
Selects whether the counter should be reset by a positive pulse on the in-
dex input or on overflow only.

Read Probe

Read Probe

Purpose Provide read access to signal during a PIL simulation
Library TI C2000
Description During a PLECS processor-in-the-loop (PIL) simulation, a Read Probe allows
PLECS to read variables in the embedded code.
For further details on the PIL simulation, refer to the PIL User Manual.
Probe

65

https://plexim.com/sites/default/files/pilmanual.pdf

4 1 co000 Target Support Library Component Reference

66

SPI Master

Purpose

Library

Description

Implement SPI Master connected to one or multiple slaves

TI C2000

The Serial Peripheral Interface (SPI) is a high-speed synchronous serial in-
put/output device that allows a serial bit stream of programmable length (1 to
16 bits) to be shifted into and out of the device at a configurable bit-transfer
rate. The SPI is usually used for communications between the MCU controller
and external peripherals, or another controller.

The SPI is a master-slave based interface with a single master and one or
more slave devices.

The interface consists of the following signals:

¢ SPISOMI Serial data input (as master in/slave out)
¢ SPISIMO Serial data output (master out/slave in)
¢ SPICLK Shift-clock, generated by the SPI Master

¢ /SPICS Chip-select or slave-enable signal, also referred to as SPISTE. The
chip-select signal is an active-low signal that enables the SOMI and SIMO
ports of the SPI Slave

The SPI Master block provides a clock signal (SPICLK) which generates a
configurable number of clock pulses during each simulation step. For both the
slave and the master, data is shifted out of the shift registers on one edge (ris-
ing or falling) of the SPICLK and latched into the shift register on the oppo-
site clock edge. If the clock phase (CPHA) bit is configured to 1, data is trans-
mitted and received a half-cycle before the SPICLK transition.

Multiple SPI Slaves can be supported by a single master through chip-select
(/CS) signals. The figure below shows an example of a single SPI Master with
two SPI Slaves.

SPICLK
SPISIMO [TX]
SPISOMI [RX]

/SPICS1

/SPICS2

[Data-out 1,Data-out 2]

SPICLK

[Data-in 1]

SPISIMO [RX]

SPISOMI [TX]

/SPICS1

SPI Slave 1

SPICLK

[Data-in 2]

SPISIMO [RX]

SPISOMI [TX]

SPI Master

SPI Master with two SPI Slaves

- IDiscretization Step >

/SPICS2
SPI Slave 2

Model StepI'
1: Slave 1 inactive
/SPICS]- 0: Slave 1 active 0: Slave 1 active
1: Slave 2 inactive 1: Slave 2 inactive|
/SPICSZ 0: Slave 2 active
SPISIMO Data-out 1 Data-out 2 Data-out 1
SPISOMI Data-in 1 Data-in 2 Data-in 1 —

An example of signal exchange between one SPI Master and two SPI Slaves

The SPI Master block exchanges data with only one SPI Slave per block exe-
cution step. If there are multiple slaves, then data is exchanged over multiple
steps. For example, as illustrated in the figure above, during the first step,

67

4 1 co000 Target Support Library Component Reference

68

Parameters

the master enables SPI Slave 1 using the chip-select signal and transmits
Data-out 1; at the same time the master also receives Data-in 1 from the first
slave. During the second step, after enabling SPI Slave 2, the master trans-
mits Data-out 2 and receives Data-in 2 from the second slave simultaneously.
This process then repeats.

An output value of 1 at the v port indicates that valid data is sent to all the
slaves.

The data to be transmitted is provided at the input TX and the data received
is available at the output RX.

¢ TX: For transmitting data to multiple slaves, provide a vector with a length
equal to the sum of the number of words per transmission per each slave.
For example, in the figures above, if Data-out 1 is a packet of 4 words
[1,2,3,4] and Data-out 2 is a packet of 3 words [16,17,18], then the input
to the TX block is provided as a vector of 7 words [1,2,3,4,16,17,18].

¢ RX: Similarly, data from multiple slaves is received as a vector with a
length equal to the sum of the number of words per transmission per each
slave. For example, in the figures above, if Data-in 1 is a packet of 4 words
[21,22,23,24] and Data-in 2 is a packet of 3 words [36,37,38], then the out-
put of the RX block is read as a vector of 7 words [21,22,23,24,36,37,38].

If the SPI Master does not have enough time to complete the transmission be-
fore the block is executed again, the output o turns 1 to indicate an overrun
error.

If an overrun error is being signaled at the o port of the SPI Master, it is pos-
sible that the task with which the SPI Master is associated executes too fast.

In this case, either reduce the SPI Master execution task rate or increase the
SPI clock rate.

For example, if SPICLK is set as 180000 Hz, and is expected to transmit a
packet of 4 words at 8 bits per word, then the time it would take to transmit
one packet is

x4x8=1.78+10"* seconds

180000

In this case, the execution step size of the SPI Master must be set to values
greater than 0.178 milliseconds.

Main

SPI module
Selects the SPI module to use.

SPI Master

Clock rate
Defines the SPI clock frequency (SPICLK), also known as the SPI Baud
Rate, in Hz.

Refer to the TI technical reference for more information on the range of
achievable SPI clock rates. This range is dependent on LSPCLK, a low-
speed peripheral clock frequency, which is device-specific.

LSPCLK is derived by dividing the SYSCLK with a prescalar. SYSCLK is
the main high speed clock of the CPU, configured in the Target tab of of
the Coder Options dialog. The attached table shows the hard-coded values
of LSPCLK for all the TTI C2000 targets.

TI €C2000 Target | LSPCLK prescaler
TI2806x /4
TI28004x /4
TI2833x /6
TI2837x /4

Bits per word (1-16)
Defines the length of a single data word during transmission. The allowed
length is 1 to 16 bits per word.

Mode [CPOL, CPHA]
Defines four SPI clocking modes, controlled by clock polarity (CPOL) and
clock phase (CPHA) bits. CPOL controls whether the clock signal is high
(1) or low (0) when idle. CPHA controls whether data is shifted in and out
on the rising or falling edge of the clock signal. The following table sum-
marizes the clocking schemes according to TT’s convention:

SPI Clocking Modes

Mode CPOL | CPHA SPI Clock Scheme
SPI_MODEO 0 1 Rising edge with delay
SPI_MODE1 0 0 Rising edge without delay
SPI_MODE2 1 1 Falling edge with delay
SPI_MODE3 1 0 Falling edge without delay

69

4 1 co000 Target Support Library Component Reference

70

Serial GPIO numbers [SIMO, SOMI, CLK]
Selects the GPIOs to use for SPISIMO, SPISOMI and SPICLK respec-
tively.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

Slave(s)

/CS GPIO number(s)
Selects the GPIOs to use for chip-select. Any GPIO, not just SPISTE, can
be configured to be a /CS signal. Provide a vector to configure multiple
slaves.

Words per transmission (vector for multiple slaves)
Configures the number of transmitted data words in each simulation step.
Provide a vector to configure multiple slaves.

SPI Slave

SPI Slave

Purpose Implement SPI Slave
Library TI C2000
Description For a detailed description of the SPI protocol and signals, refer to the SPI

Master (see page 66) block.

The SPI Slave is synchronized to the clock generated by the SPI Master. The
SPI Master uses a dedicated active-low chip-select signal that enables the
SOMI and SIMO ports of the SPI Slave.

The data to be transmitted is provided at the input TX and the data received
is available at the output RX. An output value of 1 at the v port indicates a
valid data exchange with the SPI Master.

If the SPI RX port receives new data before the previous data has been read,
the existing data will be overwritten and lost. If this occurs, the output o
turns 1 to indicate an overrun error.

There are two considerations to note when overrun errors occur:

* The master is not allowed to start transmitting before the slave is up and
running. If the slave is booting up while the master is transmitting, then it
may receive an incomplete first message, from which it will not be able to
recover.

* In order to avoid overruns, the SPI Slave block must be executed faster
than the rate at which the SPI Master is sending data.

Parameters
Main
SPI module

Selects the SPI module to use.

Bits per word (1-16)
Defines the length of a single data word during transmission. The allowed
length is 1 to 16 bits per word.

71

4 1 co000 Target Support Library Component Reference

Mode [CPOL, CPHA]
Defines four SPI clocking modes, controlled by clock polarity (CPOL) and
clock phase (CPHA) bits. CPOL controls whether the clock signal is high
(1) or low (0) when idle. CPHA controls whether data is shifted in and out
on the rising or falling edge of the clock signal. The following table sum-
marizes the clocking schemes according to TI’s convention:

SPI Clocking Modes

Mode CPOL | CPHA SPI Clock Scheme
SPI_MODEO 0 1 Rising edge with delay
SPI_MODE1 0 0 Rising edge without delay
SPI_MODE2 1 1 Falling edge with delay
SPI_MODE3 1 0 Falling edge without delay

Words per transmission
Configures the number of transmitted data words in each simulation step.

Serial GPIO numbers [SIMO, SOMI, CLK, /CS]
Selects the GPIOs to use for SPISIMO, SPISOMI, SPICLK and /SPICS
respectively.

Offline simulation
Enables or disables data inspection in an offline simulation. If set to en-
able, terminals are added to the subsystem in the top-level schematic. If
set to disable, no such terminals are added to the subsystem.

72

Timer

Timer
Purpose

Library

Description

Parameters

Generate trigger signals for the ADC start-of-conversion and the control task
using the CPU Timer

TI C2000

The Timer block configures the CPU Timer 0 interrupt to occur at the spec-
ified frequency. The timer interrupt can be used to trigger the ADC start-of-
conversion or the Control Task Trigger.

The exact timer frequency may not be achievable based on the system clock
frequency. The Frequency tolerance parameter allows automatically round-
ing to the closest achievable value when the exact timer frequency is un-
achievable.

Frequency
Defines the frequency of the timer in hertz (Hz).

Frequency tolerance
Specifies the behavior when the desired timer frequency is not achievable.

73

plexXim

electrical engineering software

Plexim GmbH infoldplexim.com www.plexim.com

	Contents
	Quick Start
	Requirements
	Install the Target Support Package
	Using the Installer Executable
	Manual Installation

	Build and Flash Configuration Settings
	Program the MCU from PLECS
	Program the MCU from CCS

	Start the External Mode
	Troubleshooting Guide

	Tips for Programming C2000 LaunchPads
	LAUNCHXL-F28069 LaunchPad
	LAUNCHXL-F280049 LaunchPad
	LAUNCHXL-F2837x LaunchPad
	TI C2000 Target Support and the PLECS RT Box

	C2000 Target Support Architecture
	Overview
	The Embedded Code Generation Workflow
	Control Task Execution
	Control Task Accuracy and PWM Frequency Tolerance
	Explicit and Implicit Trigger Definitions

	The Code Generation Project

	TI C2000 Coder Options
	General
	PGA
	Protections
	External Mode

	TI C2000 Target Support Library Component Reference
	ADC
	CAN Port
	CAN Receive
	CAN Transmit
	Control Task Trigger
	CPU Load
	DAC
	Digital In
	Digital Out
	External Sync
	Override Probe
	Peak Current Controller
	Powerstage Protection
	Pulse Capture
	PWM
	PWM (Variable)
	Quadrature Encoder Counter (QEP)
	Read Probe
	SPI Master
	SPI Slave
	Timer

