

Introduction to the Thermal Domain in PLECS

サーマルインポートウィザードの探索

Tutorial Version 1.0

1 はじめに

この演習では、PLECSの熱モデリング機能を使用して、降圧コンバータの電気と熱を組み合わせたシミュレーション を作成する方法を学習します。この演習の具体的な学習目標は次のとおりです:

- ・ 熱シミュレーションに必要なコンポーネントについて学習します。
- ・ 導通損失とスイッチング損失を考慮したMOSFETの簡単な熱モデルを作成します。PLECSインポートウィザード
 を使用した、より高度な手順については、ビデオ番号104の"PLECS: Thermal Simulation of a Buck-Converter"
 で紹介しています。
- ・ MOSFETの定常動作ジャンクション温度を確立します。
- スイッチの個々の損失と合計損失、およびシステム全体の効率を計算します。

始める前にファイルthermal_domain_start.plecsとディレクトリthermal_lib(PLECS設定の熱設定タブで 指定)がすべて作業ディレクトリにあることを確認します。また、演習の各段階で独自のモデルと比較する参照ファイル も用意する必要があります。演習の一部として参照用にデータシートc3m0120090d.pdfも含まれています。

- 免責事項

データシートは製造元に対して法的拘束力があり、通常はデバイスパラメータの最悪の場合の値を示します。 このため、より現実的な熱の説明を入手するには、サプライヤに問い合わせることをお勧めします。利用可能 なモデルのリストは<u>オンライン</u>で確認できます。

2 回路

この演習で使用する回路を図1に示します。これは、20kHzで動作するSiC MOSFETスイッチを備えた降圧コンバータです。電気的パラメータは表1に示されています。

表1: 降圧コンバータの電気的パラメータ

Component	V _{DC}	f _{sw}	P _{out}	Duty cycle	С	V _{C,initial}	L	I _{L,initial}	R
Value	500V	20 kHz	2kW	50%	200 µ F	250V	10 mH	8A	31.25Ω

3 背景

PLECSを使用して熱シミュレーションを実行するには、ヒートシンク、熱特性を持つ半導体部品、周囲温度の3つの コンポーネントが必要です。熱シミュレーションは回路シミュレーションと同時に実行されますが、熱コンポーネント はPLECSでは別の領域で表現されます。熱量とそれに相当する電気回路を表2に示しています。電気回路では、 コンポーネントの導通損失は理想的な電流源とし、コンポーネントと空気間の熱インピーダンスは単純な抵抗 またはRCチェーンとし、周囲温度は電圧源としてモデル化しています。この等価回路を図2に示します。

表2: 等価熱量と電気量

Therm. Domain	Elec. Domain
Temperature (K)	Voltage (V)
Heat (J)	Charge (C)
Heat flow (W)	Current (A)
Therm. cap. (J/K)	Elec. cap. (F)
Therm. res. (K/W)	Elec. res. (Ω)

図2: 熱回路の電気的等価

"ヒートシンク"ブロックは、PLECSで熱回路をモデリングするための基本コンポーネントです。"ヒートシンク"ブロック は、システム内の実際のヒートシンクを表現できる等温度面を提供しますが、一般的には個別の温度層です。ヒート シンクブロックは、その境界内に含まれるすべてのコンポーネントのスイッチング損失と導通損失を吸収します。 PLECSでは、スイッチングエネルギーパルスは、幅がゼロで高さが無限のディラック(Dirac)インパルスとしてモデリング されます。そのためヒートシンクの熱容量を定義するか、容量付きの熱チェーンを使用して、スイッチングエネルギー パルスが熱抵抗全体に無限大の温度を生じないようにする必要があります。

注意; ヒートシンクは、熱損失を放散する*すべての*固有コンポーネントを捕捉します。これは、半導体損失に加えて、 抵抗器も監視できることを意味します。抵抗損失はi²·R、またはV²/Rとして計算されます。

4 チュートリアル

4.1 熱モデルの作成

 $\dot{\gamma}$

[⊉]

あなたのタスク: PLECSモデルthermal_domain_start.plecsを開き、図1に示すように"熱回路"セクション からコブロックを回路に追加します。"回路要素"から"ヒートシンク"と"熱抵抗器"、"熱源"から"定常温度(接地条件 付き)"ブロック。これらのコンポーネントのパラメータは次のとおりです。

- 定常温度は25℃。
- ヒートシンクの熱容量は0.001J/K。また、初期温度を定常温度と同じ値に設定。

・ 現在の設計状態では、ヒートシンクと周囲温度間の熱抵抗は不明です。電気設計の観点から、最初に熱抵抗 を最大許容値に設定するのが一般的な方法です。効率が少なくとも95%であると仮定すると、最大消費電力 は100Wになります。最大温度変化が80℃の場合、初期評価値は0.8K/Wになります。

注意; Shiftキーを押しながらヒートシンク端子をドラッグすると、境界上の別の空きスロットに移動できます。マウス ボタンを放すと、端子が移動します。

4.2 熱設定をリンクして作成

ダイオードの損失は、ファイルC3D08060A.xmlに事前定義されています。この熱設定をダイオードに追加する には、このファイルのパスを熱設定の検索パスに追加する必要があります。MOSFETの損失は、いくつかの入力値 を使用して最初から作成されます。損失熱設定が完了したら、PLECSプローブを使用して、MOSFET とダイオード に関連する信号を監視します。

あなたのタスク:このタスクでは、ダイオードの定義済み熱熱設定を読み込みます。

- 1 ファイル + PLECS設定...メニューで、熱設定タブに移動し、熱設定を含むディレクトリを熱設定サーチパスに 追加します。再検索ボタンを押して変更を有効にします。
- 2 "ダイオード(理想モデル)"コンポーネントをダブルクリックします。**熱設定**タブの**熱設定**パラメータで、**ライブラリ** から読み込み…オプションを使用してC3D08060Aを選択します。適用をクリックして選択内容を保存します。

あなたのタスク: このタスクでは、データシートのいくつかの値を使用して、"ダイオード内蔵MOSFET"の新しい 熱設定を作成します。

- 1 "ダイオード内蔵MOSFET"コンポーネントをダブルクリックします。熱設定タブ熱設定パラメータで、新規熱設定... を選択します。
- 2 製造メーカーにWolfspeed、パーツナンバーにC3M0120090Dを追加します。前のタスクで定義したローカル 熱ライブラリに、ファイルをC3M0120090D tutorial.xmlとして保存します。
- 3 ターン・オン損失タブに移動し、エネルギー単位をµJに設定します。
- 4 次のステップは、データシートc3m0120090d.pdfのFigure 23およびFigure 24の記載されている重要な 損失データをテーブルに入力することです。これらの損失データは、V_{DD}が600Vから400Vに変化する際に、 一定のゲート抵抗R_gとゲートソース間電圧を使用して測定されます。降圧コンバータは500Vで切り替わる ため、補間を改善するために熱説明に両方の値を含めることは合理的です。また、異なる電流の損失値を選択 する必要があります。ターゲット電流は8Aなので、この値と15Aを選択します。
- 5 良好な補間を確保するのに、スイッチングエネルギーが0 µ Jで負の電流値と電圧値を追加することを推奨 します。
- 6 プロットを右クリックして、電流値の追加...と電圧値の追加....を追加します。次の数値を入力します。

	-10A	OA	8A	15A
-100V	Ομ J	0 µ J	Ομ J	0 µ J
OV	Ομ J	Ομ J	Ομ J	Ο μ J
400V	Ο μ J	Ο μ J	65 µ J	140 μ J
600V	Ομ J	Ομ J	120 µ J	250 μ J

- 7 ターン・オフ損失タブに移動し、記載されているすべてのポイントを繰り返します。
- 8 これまでのところ、25℃の損失データのみが追加されています。温度依存シミュレーションには、別の温度値の追加が不可欠です。データシートのFigure 26は、温度依存のスイッチング損失を示しています。簡単にするために、線形挙動を仮定して、25℃と150℃での損失を比較することができます。ターン・オフ損失は20%しか増加しませんが、ターン・オン損失は約80%増加します。便宜上、完全に正確ではないことは承知して、値にこれら2つの係数を乗算します。ゼロエントリも忘れずに追加してください。

		25℃		150°C	
		8A	15A	8A	15A
ターン・オン損失	400V	65 μ J	140 μ J	117μJ	252 μ J
	600V	120 μ J	250 μ J	216 µ J	450 μ J
ターン・オフ損失	400V	8 µ J	30 µ J	9.6 μ J	36 µ J
	600V	10 μ J	40 µ J	12 µ J	48 µ J

- 9 デバイスのデータシートFigure 2とFigure 3を使用して、導通損失を見積もることができます。ゲートを最大電圧 で駆動していない限り、製造メーカは"V_{cs} = 15"曲線を参照することを推奨しています。
- **10 導通損失**タブに移動して値を入力します。すべての温度にOAでOVの値があることを確認します。次の表の 数字を入力します:

	OA	5A	15A	25A	35A	45A
25℃	OV	0.6V	1.8V	3.2V	4.7V	6.5V
150℃	OV	0.8V	2.4V	4.2V	6.4V	9.3V

11 さらに、第3象限の導通損失を定義する必要があります。この構成の降圧コンバータは負電流領域で導通 できませんが、少なくともボディダイオードの導通を定義することをお勧めします。同期降圧コンバータなど、 負電流の導通が重要なアプリケーションでは、ゲート依存の導通損失を定義することをお勧めします(8章の 付録)。

データシートの**Figures 9**と**Figures 10**は、それぞれ25℃と150℃でのボディダイオードのデータを示して います。SiC MOSFETは通常、負のゲート電圧でオフになるため、*V_{cs}* = 44Vの曲線を取得してマトリックスに 追加します:

	-40A	-30A	-20A	-10A	-5A	-1A	-0.1A
25℃	-7.7V	-7.0V	-6.2V	-5.2V	-4.5V	-3.5A	-3.0V
150℃	-7.2V	-6.5V	-5.7V	-4.8V	4.1V	-3.2V	-2.7V

12 熱RCタブに移動し、タイプとしてCauerを選択し、要素数を1に増やします。R(K/W)とC(J/K)にそれぞれ0.5 と0.1を入力します。

4.3 熱シミュレーション

٢

あなたのタスク:これで、MOSFETジャンクション温度を監視し、シミュレーションを実行できるようになりました。

- 1 熱設定エディタウィンドウを閉じて、回路図に戻ります。ライブラリから"PLECSプローブ"ブロックを回路図に 追加し、それを使用してMOSFETの温度を監視します。コンポーネントをプローブに関連付ける最も簡単な 方法は、それをプローブに直接ドラッグし、ポインタの形状が十字から矢印に変わったらマウス ボタンを放す ことです。これを実行した後、右側のリストからジャンクション温度を監視するオプションを選択します。
- 2 "ダイオード内蔵MOSFET"と"ダイオード(理想モデル)"の、それぞれの熱設定タブで初期温度に25℃の値を 入力します。

- 3 他のすべてのシミュレーションパラメータはデフォルトのままにし、**Ctrl + T**を押してシミュレーションを1.0秒間 実行します。
- (?) MOSFETジャンクションの最終温度はどれくらいですか?

▲ ~37.7℃

この段階では、モデルは参照モデルthermal_domain_1.plecsと同じになるはずです。

4.4 平均損失計算

多くの場合、重要な要素は各半導体の平均消費電力です。コンポーネントの平均損失は、スイッチングサイクル中 に発生する損失を合計し、次のスイッチングサイクル中に平均電力パルスを生成することによって計算できます。 このサイクル平均損失の計算手順は、図3にまとめられています。

図3: 総サイクル平均損失の計算

あなたのタスク:

- 1 PLECSライブラリブラウザの"システムブロック"リストには、すべての損失を測定できるブロックが含まれています。"スイッチ損失算出"ブロックは、半導体の平均導通損失とスイッチング損失の測定に適しています。 モデルに"スイッチ損失算出"ブロックを配置し、"ダイオード内蔵MOSFET"と"ダイオード(理想モデル)"に適切な損失信号を提供します。これを行うには、各半導体をスイッチ損失算出にドラッグします。
- 2 "スイッチ損失算出"は、組み込みコンポーネントです。内部実装を確認するには、コンポーネントを右クリック して**ヘルプ**を選択します。
- 3 "スイッチ損失算出"で、平均化時間をスイッチング周波数20kHzの逆数である50e-6秒に設定します。
- 4 出力から全損失を選択すると、半導体の平均総損失が得られます。
- 5 "熱流計"ブロックを熱チェーンと周囲温度の間に配置して、両方の半導体の合計平均損失を測定します。"マルチ プレクサ"ブロックを使用して、損失算出の全損失を表示するのと同じスコープにを表示します。
- 6 シミュレーションを1.0秒間実行します。"熱流計"の出力を全損失算出と比較します。
- (?) 結果は一致していますか? 波形に違いがあるのはなぜですか?
- A 約12W。熱流計"は熱回路内の熱流を測定するため、ヒートシンクの静電容量により温まるまでに時間がかかるため、違いが生じます。一方、損失プローブはコンポーネントのジャンクション直接接続されます。
- この段階では、モデルは参照モデルthermal_domain_2.plecsと同じになるはずです。

5 効率計算

パワー半導体に関連する損失がわかれば、コンバータの効率を計算できます。このチュートリアルでは、ヒート シンクコンポーネント上にパワー半導体デバイスのみを配置します。ただし、抵抗損失を考慮するために、ヒート シンクに電気抵抗器を配置することもできます。

あなたのタスク:

7

Ň

1 追加の"PLECSプローブ"、"周期平均"、および"マルチプレクサ"ブロックを、回路図のスイッチ"損失算出"ブロック の近くに配置します。追加した"PLECSプローブ"に"DC電圧源"をドラッグし、電力信号を監視してコンバータの 入力電力をプローブします。電源電力を"周期平均"ブロックに接続し、平均化時間も0.05ミリ秒にします。"マルチ プレクサ"を使用して、"周期平均"からの出力と"スイッチ損失算出"の全損失を図4に示すようにに結合します。 オプションのステップとして、下限が1、上限がinfの"飽和"ブロックを追加します。これにより、シミュレーション の開始時に"ゼロ除算"の問題が発生しなくなります。

図4: 入力電力とデバイスの総損失を使用したコンバータ効率の計算

2 "マルチプレクサ"ブロックと"飽和"ブロックの出力に直列に"関数"ブロックを配置します。ここでは、ベクトル化 されたバスを使用して、電源電力と"スイッチング損失算出"の信号の両方にアクセスします。式ボックスに、 (1-u[1]/u[2])*100を入力します。"マルチプレクサ入"力にルーティングした下側(2番目)の信号が電源 電力であれば、この効率式は:

 $\eta = (P_{\rm in} - P_{\rm loss})/P_{\rm in}$

に相当します。

この結果に100を掛けると、結果がパーセンテージとしてフォーマットされます。最後に、"数値表示"ブロック を使用して計算結果を数値形式で表示します。これは、"PLECSスコープ"を使用して計算をシミュレートされた 波形として表示するよりも好ましい場合があります(これは、MOSFETとダイオードの損失の合計電力の計算 にも望ましい場合があります)。

3 シミュレーションを再実行します。

注意: 半導体コンポーネントの熱設定パラメータを指定した場合、放散される熱電力はデバイスで消費される 電力と一致しません。また、スイッチング遷移は瞬間的な性質のため、放散された熱エネルギーはデバイスによって 電気的に消費されることはありません。回路の効率を推定して熱損失を使用する場合は、これらの重要な要素を 考慮する必要があります。つまり、ユーザがコンポーネントパラメータで指定したすべてのオン抵抗と順電圧の値は シミュレーション中は固定され、システムの電気的動作、つまり電圧と電流の大きさにのみ影響することを意味 します。したがって、上記の効率計算手法は、PLECSで使用する必要がある正しい方法であり、P.,,/P.,を単純に 計算することは、システム内の熱損失を考慮していないため同等ではありません。

ノ

あなたのタスク: (オプション)半導体デバイスにオン抵抗と順電圧を追加して、これらのコンポーネント間の電圧 降下を考慮することができます。

1 追加の"PLECSプローブ"、"周期平均"、および"マルチプレクサ"ブロックを、"スイッチ損失算出"ブロック近くの回路図に配置します。"ダイオード(理想モデル)"の両端の電圧と"インダクタ"を流れる電流を調べます。 ダイオードの両端の電圧は負になるため、"ゲイン(利得)"を追加して値[-1 1]を追加していることに注意してください。両方の信号を"乗除算"で乗算し、結果を"周期平均"で0.05msに平均します。"マルチプレクサ"を使用して、この値と電源電力の測定結果を、図5に示すように、に結合します。オプションのステップとして、下限が1、上限がinfの"飽和"ブロックを追加します。これにより、シミュレーションの開始時に"ゼロ除算"の問題が発生しなくなります。

図5: 入力電力と出力電力を使用した電気効率の計算

2 "マルチプレクサ"ブロックと"飽和"ブロックの出力に直列に"関数"ブロックを配置します。ここでは、ベクトル化されたバスを使用して、電源電力と平均化した信号の両方にアクセスします。式ボックスに、式(u[1]/u[2])*100を入力します。"マルチプレクサ"入力にルーティングした下側(2番目)の信号が電源電力電力であれば、この効率式は:

 $\eta = P_{\rm out}/P_{\rm in}$

に相当します。

この結果に100を掛けると、結果がパーセンテージとしてフォーマットされます。最後に、"数値表示"ブロック を使用して計算結果を数値形式で表示します。これは、"PLECSスコープ"を使用して計算をシミュレートされた 波形として表示するよりも好ましい場合があります。

- **3** シミュレーションを再実行します。電気損失がモデル化されていないため、結果が100.00%であることがわかり ます。
- 4 MOSFETのオン抵抗は、導通損失表に示されている値を使用して評価できます。温度が25℃に固定され、 半導体を流れる平均電流が4Aであると仮定すると、5Aの任意のポイントでの抵抗は:
 - $R_{\rm on} = 0.6 \text{V}/5 \text{A} = 0.12 \Omega$ として計算できます。
- 5 同様に、ダイオードの順電圧とオン抵抗も推定できます。順電圧は、ダイオードを開始する曲線で確認できます。
 25℃曲線の場合、これは0.24Aで、順電圧は 0.8877V です。オン抵抗は、直線の傾きとして:
 *R*_{on} = (2.341V 0.8877V)/(19.9A 0.24A) = 0.0739Ω
 として求められます。
- (?) 熱損失を考慮して計算した効率と比べてどのような違いがありますか?
- A コンバータはすでに非常に効率的(> 99%)であるため、追加の電気パラメータはシミュレーション結果に大きな 影響を与えません。
- この段階では、モデルは参照モデルthermal_domain_3.plecsと同じになるはずです。

الک

あなたのタスク: (*オプション*)Wolfspeedから熱設定を読み込み、生成されたより単純なモデルと比較することが できます。

- 1 後で比較するために、まずシミュレーション結果をスコープに保存します。
- 2 "ダイオード内蔵MOSFET"をダブルクリックし、熱記設定C3M0120090D.xmlを読み込みます。
- 3 このトピックはこの入門チュートリアルでは取り上げていませんが、熱設定では、スイッチング損失データにおけるゲート抵抗依存性を許可するなどのカスタム変数を使用することもできます。MOSFETデータには、 ターンオン損失とターンオフ損失の式に変数"Rg"がすでに含まれています。シミュレーションを実行するには、 ゲート抵抗の値を指定する必要があります。"ダイオード内蔵MOSFET"をダブルクリックします。熱設定タブの 熱設定パラメータで、gate resistanceに2.5Ωの値を入力します。
- 4 同じタブで、"ダイオード内蔵MOSFET"のInitial temperatureに25℃の値を入力します。
- 5 他のすべてのシミュレーションパラメータはデフォルトのままにして**Ctrl + T**を押してシミュレーションを1.5 秒間実行します。

6 定常動作

効率と損失評価では、回路の定常状態が最も重要です。大規模なシステムでは、初期の過渡状態の発生後から定常 状態に達するまで多くのシミュレーション能力が必要になるため、定常状態解析を直接実行することをお勧め します。

シミュレーションメニューから解析ツール…を選択します。ダイアログボックスが開き、さまざまな解析を追加および 構成できます。+をクリックして、定常解析を選択します。事前に構成された設定が読み込まれます。定常状態に 達した後の3つのサイクルを表示するには、定常周期の表示の数を3に変更します。解析を開始するには、解析開始 ボタンをクリックします。ログを表示ボタンをクリックすると、解析の進行状況を表示できます。

解析が終了すると、"PLECSスコープ"で事前構成されたすべての波形に対して3つの定常状態サイクルのシミュ レーションが表示されます。

- (?) 定常状態で動作している場合のシステムの効率はどの程度ですか?
- ▲ 単純な熱設定と完全な熱設定の両方で、計算された効率は約 99.4%です。これは、わずか数個のデータ ポイントのみを使用して熱設定をすばやく設定する場合でも、すでに意味のあるシミュレーション結果が得られるという事実を強調するものです。
- この段階では、モデルは参照モデルthermal_domain_4.plecsと同じになるはずです。

7 結論

この演習では、PLECSを使用して電気と熱を組み合わせたシミュレーションを作成する方法を学習しました。熱解析 に必要な基本的なコンポーネントはヒートシンクです。また、スイッチの熱設定を作成する方法も学習しました。 熱回路モデルにおける半導体の損失とそれらの熱結合を記述するデータが得られれば、システム損失と効率を 計算できます。 この演習の延長として、PLECSでより複雑で階層的な熱モデルの設計を練習します。これは、サブシステムを使用 して熱コンポーネントを階層化し、ヒートシンクやホットスポットを表す上部マスクの下にヒートシンクを定義する ことによって実現できます。

8 付録: ゲート依存の導通損失

MOSFETは両方向に電流を流すことができるため、逆並列ダイオードを内蔵した MOSFETの導通損失は、電流が 逆方向に流れるときのゲート信号に依存します。この効果を考慮するために、2つの個別の導通損失定義を提供 できます。1つはゲート信号がゼロ以外の場合に、もう1つはゲート信号がゼロの場合に使用すします。

ゲート信号に関する導通損失を定義する個別のタブを作成するには、種類でMOSFET with Diodeを選択し、 タブバーを右クリックして、図6に示すようにコンテキストメニューから ゲート依存の伝導損失を適用を選択します。

図6: ダイオード内蔵MOSFETのゲート依存の導通損失の設定

C3M0120090Dデバイスのデータシートには、Figures 8 -10 のCond. loss (gate off)データ セットに使用され るボディダイオードに必要なデータが含まれています。Figures 13 - 15には、**Cond. loss (gate on)**に使用される 第3象限特性のデータが記載されています。後者のデータがデータシートにない場合は、MOSFET チャネルのデ ータをミラーリングして、ボディダイオードのデータと並列化することをお勧めします。 改訂履歷: Tutorial Version 1.0 初版

ple;	+41 44 533 51	Pleximへの連絡力 00	5法: Phone
	+41 44 533 51	01	Fax
	Plexim GmbH Technoparkstra 8005 Zurich Switzerland	sse 1	Mail
@	info@plexim.com	n	Email
	http://www.plex	kim.com	Web

Advancing Automation AUTO

アドバンオートメーションへの連絡方法:

2	+81 3 5282 7047	Phone
	+81 3 5282 0808	Fax
	ADVAN AUTOMATION CO.,LTD	Mail
	1-9-5 Uchikanda, Chiyoda-ku	
	Tokyo, 101-0047	
	Japan	
@	plecs_adva@adv-auto.co.jp	Email
	https://adv-auto.co.jp/	Web

PLECS Tutorial

© 2002–2022 by Plexim GmbH

このマニュアルで記載されているソフトウェアPLECSは、ライセンス契約に基づいて提供されています。ソフトウェアは、ライセンス 契約の条件の下でのみ使用またはコピーできます。Plexim GmbHの事前の書面による同意なしに、このマニュアルのいかなる 部分も、いかなる形式でもコピーまたは複製することはできません。

PLECSはPlexim GmbHの登録商標です。MATLAB、Simulink、およびSimulink Coderは、The MathWorks、Inc.の登録商標です。その他の製品名またはブランド名は、それぞれの所有者の商標または登録商標です。